Teknik Mesin
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 17 Februari 2025
Turbin gas
Turbin gas itu adalah sebuah mesin berputar yang mengambil energi dari arus gas pembakaran. Dia memiliki kompresor naik ke-atas dipasangkan dengan turbin turun ke-bawah, dan sebuah bilik pembakaran di-tengahnya.

Penggantian mesin turbin gas Honeywell AGT1500 pada tank M1A1 Abrams.
Energi ditambahkan di arus gas di pembakar, di mana udara dicampur dengan bahan bakar dan dinyalakan. Pembakaran meningkatkan suhu, kecepatan dan volume dari aliran gas. Kemudian diarahkan melalui sebuah penyebar (nozzle) melalui baling-baling turbin, memutar turbin dan mentenagai kompresor.
Energi diambil dari bentuk tenaga shaft, udara terkompresi dan dorongan, dalam segala kombinasi, dan digunakan untuk mentenagai pesawat terbang, kereta, kapal, generator, dan bahkan tank.
Sejarah

Photo of the Metrovick Gatric first marine gas-turbine. It was installed in the Royal Navy's Motor Gun Boat MGB 2009 in 1947


Teori operasi
Turbin gas dijelaskan secara termodinamika oleh Siklus Brayton, di mana udara dikompresi secara isentropic, pembakaran terjadi pada tekanan konstan, dan ekspansi terjadi di turbin secara isentropik kembali ke tekanan awal.

Dalam praktiknya, gesekan dan turbulensi menyebabkan:
Seperti semua siklus mesin panas, suhu pembakaran yang lebih tinggi berarti lebih besar efisiensinya. Faktor pembatas adalah kemampuan baja, nikel, keramik, atau materi lain yang membentuk mesin untuk menahan panas dan tekanan. Berbagai metode dibutuhkan untuk menjaga temperatur. Kebanyakan turbin juga mencoba untuk memulihkan knalpot panas (heat recovery), yang merupakan energi terbuang. Recuperator adalah heat exchanger yang menangkap panas knalpot dan memindahkan panasnya ke udara terkompresi yang menuju pembakaran. Gabungan siklus desain memanfaatkan panas terbuang ke sistem. Dan gabungan panas dan daya (co-generation) menggunakan panas terbuang untuk produksi panas.
Pendahuluan
Gas-turbine engine adalah suatu alat yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan pembakaran internal. Di dalam turbin gas energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang memutar roda turbin sehingga menghasilkan daya. Sistem turbin gas yang paling sederhana terdiri dari tiga komponen yaitu kompresor, ruang bakar dan turbin gas.
Prinsip Kerja Sistem Turbin Gas (Gas-Turbine Engine)
Udara masuk kedalam kompresor melalui saluran masuk udara (inlet). Kompresor berfungsi untuk menghisap dan menaikkan tekanan udara tersebut, sehingga temperatur udara juga meningkat. Kemudian udara bertekanan ini masuk kedalam ruang bakar. Di dalam ruang bakar dilakukan proses pembakaran dengan cara mencampurkan udara bertekanan dan bahan bakar. Proses pembakaran tersebut berlangsung dalam keadaan tekanan konstan sehingga dapat dikatakan ruang bakar hanya untuk menaikkan temperatur. Gas hasil pembakaran tersebut dialirkan ke turbin gas melalui suatu nozel yang berfungsi untuk mengarahkan aliran tersebut ke sudu-sudu turbin. Daya yang dihasilkan oleh turbin gas tersebut digunakan untuk memutar kompresornya sendiri dan memutar beban lainnya seperti generator listrik, dll. Setelah melewati turbin ini gas tersebut akan dibuang keluar melalui saluran buang (exhaust).
Secara umum proses yang terjadi pada suatu sistem turbin gas adalah sebagai berikut:
Pada kenyataannya, tidak ada proses yang selalu ideal, tetap terjadi kerugian-kerugian yang dapat menyebabkan turunnya daya yang dihasilkan oleh turbin gas dan berakibat pada menurunnya performa turbin gas itu sendiri. Kerugian-kerugian tersebut dapat terjadi pada ketiga komponen sistem turbin gas. Sebab-sebab terjadinya kerugian antara lain:
Klasifikasi Turbin Gas
Turbin gas dapat dibedakan berdasarkan siklusnya, kontruksi poros dan lainnya. Menurut siklusnya turbin gas terdiri dari:
Perbedaan dari kedua tipe ini adalah berdasarkan siklus fluida kerja. Pada turbin gas siklus terbuka, akhir ekspansi fluida kerjanya langsung dibuang ke udara atmosfer, sedangkan untuk siklus tertutup akhir ekspansi fluida kerjanya didinginkan untuk kembali ke dalam proses awal.
Dalam industri turbin gas umumnya diklasifikasikan dalam dua jenis yaitu:
Turbin Gas Poros Tunggal (Single Shaft)
Turbin jenis ini digunakan untuk menggerakkan generator listrik yang menghasilkan energi listrik untuk keperluan proses di industri.
Turbin Gas Poros Ganda (Double Shaft)
Turbin jenis ini merupakan turbin gas yang terdiri dari turbin bertekanan tinggi dan turbin bertekanan rendah, di mana turbin gas ini digunakan untuk menggerakkan beban yang berubah seperti kompresor pada unit proses.
Siklus-Siklus Turbin Gas
Tiga siklus turbin gas yang dikenal secara umum yaitu:
Siklus Ericson
Merupakan siklus mesin kalor yang dapat balik (reversible) yang terdiri dari dua proses isotermis dapat balik (reversible isotermic) dan dua proses isobarik dapat balik (reversible isobaric). Proses perpindahan panas pada proses isobarik berlangsung di dalam komponen siklus internal (regenerator), di mana effisiensi termalnya adalah: hth = 1 – T1/Th, di mana T1 = temperatur buang dan Th = temperatur panas.
Siklus Stirling
Merupakan siklus mesin kalor dapat balik, yang terdiri dari dua proses isotermis dapat balik (isotermal reversible) dengan volume tetap (isokhorik). Efisiensi termalnya sama dengan efisiensi termal pada siklus Ericson.
Siklus Brayton
Siklus ini merupakan siklus daya termodinamika ideal untuk turbin gas, sehingga saat ini siklus ini yang sangat populer digunakan oleh pembuat mesin turbine atau manufacturer dalam analisis untuk performance upgrading. Siklus Brayton ini terdiri dari proses kompresi isentropik yang diakhiri dengan proses pelepasan panas pada tekanan konstan. Pada siklus Bryton tiap-tiap keadaan proses dapat dianalisis secara berikut:
Proses 1 ke 2 (kompresi isentropik). Kerja yang dibutuhkan oleh kompresor: Wc = ma (h2 – h1). Proses 2 ke 3, pemasukan bahan bakar pada tekanan konstan. Jumlah kalor yang dihasilkan: Qa = (ma + mf) (h3 – h2). Proses 3 ke 4, ekspansi isentropik di dalam turbin. Daya yang dibutuhkan turbin: WT = (ma + mf) (h3 – h4). Proses 4 ke 1, pembuangan panas pada tekanan konstan ke udara. Jumlah kalor yang dilepas: QR = (ma + mf) (h4 – h1)
Perkembangan Gas Turbin
Disain pertama turbin gas dibuat oleh John Wilkins seorang Inggris pada tahun 1791. Sistem tersebut bekerja dengan gas hasil pembakaran batu bara, kayu atau minyak, kompresornya digerakkan oleh turbin dengan perantaraan rantai roda gigi. Pada tahun 1872, Dr. F. Stolze merancang sistem turbin gas yang menggunakan kompresor aksial bertingkat ganda yang digerakkan langsung oleh turbin reaksi tingkat ganda. Tahun 1908, sesuai dengan konsepsi H. Holzworth, dibuat suatu sistem turbin gas yang mencoba menggunakan proses pembakaran pada volume konstan. Tetapi usaha tersebut dihentikan karena terbentur pada masalah konstruksi ruang bakar dan tekanan gas pembakaran yang berubah sesuai beban. Tahun 1904, “Societe des Turbomoteurs” di Paris membuat suatu sistem turbin gas yang konstruksinya berdasarkan disain Armengaud dan Lemate yang menggunakan bahan bakar cair. Temperatur gas pembakaran yang masuk sekitar 450 C dengan tekanan 45 atm dan kompresornya langsung digerakkan oleh turbin.
Selanjutnya, pada tahun 1935 sistem turbin gas mengalami perkembangan yang pesat di mana diperoleh efisiensi sebesar kurang lebih 15%. Pesawat pancar gas yang pertama diselesaikan oleh “British Thomson Houston Co” pada tahun 1937 sesuai dengan konsepsi Frank Whittle (tahun 1930).
Komponen Turbin Gas
Turbin gas tersusun atas komponen-komponen utama seperti air inlet section, compressor section, combustion section, turbine section, dan exhaust section. Sedangkan komponen pendukung turbin gas adalah starting equipment, lube-oil system, cooling system, dan beberapa komponen pendukung lainnya. Berikut ini penjelasan tentang komponen utama turbn gas:
Air Inlet Section.
Berfungsi untuk menyaring kotoran dan debu yang terbawa dalam udara sebelum masuk ke kompresor. Bagian ini terdiri dari:
Compressor Section.
Komponen utama pada bagian ini adalah aksial flow compressor, berfungsi untuk mengkompresikan udara yang berasal dari inlet air section hingga bertekanan tinggi sehingga pada saat terjadi pembakaran dapat menghasilkan gas panas berkecepatan tinggi yang dapat menimbulkan daya output turbin yang besar. Aksial flow compressor terdiri dari dua bagian yaitu:
Combustion Section.
Pada bagian ini terjadi proses pembakaran antara bahan bakar dengan fluida kerja yang berupa udara bertekanan tinggi dan bersuhu tinggi. Hasil pembakaran ini berupa energi panas yang diubah menjadi energi kinetik dengan mengarahkan udara panas tersebut ke transition pieces yang juga berfungsi sebagai nozzle. Fungsi dari keseluruhan sistem adalah untuk mensuplai energi panas ke siklus turbin. Sistem pembakaran ini terdiri dari komponen-komponen berikut yang jumlahnya bervariasi tergantung besar frame dan penggunaan turbin gas. Komponen-komponen itu adalah:
Turbin Section.
Turbin section merupakan tempat terjadinya konversi energi kinetik menjadi energi mekanik yang digunakan sebagai penggerak compresor aksial dan perlengkapan lainnya. Dari daya total yang dihasilkan kira-kira 60 % digunakan untuk memutar kompresornya sendiri, dan sisanya digunakan untuk kerja yang dibutuhkan. Komponen-komponen pada turbin section adalah sebagai berikut:
Exhaust Section.
Exhaust section adalah bagian akhir turbin gas yang berfungsi sebagai saluran pembuangan gas panas sisa yang keluar dari turbin gas. Exhaust section terdiri dari beberapa bagian yaitu: (1) Exhaust Frame Assembly, dan (2)Exhaust gas keluar dari turbin gas melalui exhaust diffuser pada exhaust frame assembly, lalu mengalir ke exhaust plenum dan kemudian didifusikan dan dibuang ke atmosfer melalui exhaust stack, sebelum dibuang ke atmosfer gas panas sisa tersebut diukur dengan exhaust thermocouple di mana hasil pengukuran ini digunakan juga untuk data pengontrolan temperatur dan proteksi temperatur trip. Pada exhaust area terdapat 18 buah termokopel yaitu, 12 buah untuk temperatur kontrol dan 6 buah untuk temperatur trip.
Komponen penunjang turbin gas
Adapun beberapa komponen penunjang dalam sistem turbin gas adalah sebagai berikut:
Starting Equipment.
Berfungsi untuk melakukan start up sebelum turbin bekerja. Jenis-jenis starting equipment yang digunakan di unit-unit turbin gas pada umumnya adalah:
Coupling dan Accessory Gear.
Berfungsi untuk memindahkan daya dan putaran dari poros yang bergerak ke poros yang akan digerakkan. Ada tiga jenis coupling yang digunakan, yaitu:
Fuel System.
Bahan bakar yang digunakan berasal dari fuel gas system dengan tekanan sekitar 15 kg/cm2. Fuel gas yang digunakan sebagai bahan bakar harus bebas dari cairan kondensat dan partikel-partikel padat. Untuk mendapatkan kondisi tersebut diatas maka sistem ini dilengkapi dengan knock out drum yang berfungsi untuk memisahkan cairan-cairan yang masih terdapat pada fuel gas.
Lube Oil System.
Lube oil system berfungsi untuk melakukan pelumasan secara kontinu pada setiap komponen sistem turbin gas. Lube oil disirkulasikan pada bagian-bagian utama turbin gas dan trush bearing juga untuk accessory gear dan yang lainnya. Lube oil system terdiri dari:
Pada turbin gas terdapat tiga buah pompa yang digunakan untuk mensuplai lube oil guna keperluan lubrikasi, yaitu:
Cooling System.
Sistem pendingin yang digunakan pada turbin gas adalah air dan udara. Udara dipakai untuk mendinginkan berbagai komponen pada section dan bearing. Komponen-komponen utama dari cooling system adalah:
Maintenance Turbin Gas
Maintenance adalah perawatan untuk mencegah hal-hal yang tidak diinginkan seperti kerusakan terlalu cepat terhadap semua peralatan di pabrik, baik yang sedang beroperasi maupun yang berfungsi sebagai suku cadang. Kerusakan yang timbul biasanya terjadi karena keausan dan ketuaan akibat pengoperasian yang terus-menerus, dan juga akibat langkah pengoperasian yang salah. Maintenance pada turbine gas selalu tergantung dari faktor-faktor perasional dengan kondisi yang berbeda disetiap wilayah, karena operasional turbine gas sangat tergantung dari kondisi daerah operasional. Semua pabrik pembuat turbine gas telah menetapkan suatu ketetapan yang aman dalam pengoperasian sehingga turbine selalu dalambatas kondisi aman dan tepat waktu untuk melakukan maintenance. Secara umum maintenance dapat dibagi dalam beberapa bagian, diantaranya adalah:
Preventive Maintenance.
Suatu kegiatan perawatan yang direncanakan baik itu secara rutin maupun periodik, karena apabila perawatan dilakukan tepat pada waktunya akan mengurangi down time dari peralatan. Preventive maintenance dibagi menjadi:
Repair Maintenance.
Perawatan yang dilakukan terhadap peralatan yang tidak kritis, atau disebut juga peralatan-peralatan yang tidak mengganggu jalannya operasi.
Predictive Maintenance.
Kegiatan monitor, menguji, dan mengukur peralatan-peralatan yang beroperasi dengan menentukan perubahan yang terjadi pada bagian utama, apakah peralatan tersebut berjalan dengan normal atau tidak.
Corrective Maintenance.
Perawatan yang dilakukan dengan memperbaiki perubahan kecil yang terjadi dalam disain, serta menambahkan komponen-komponen yang sesuai dan juga menambahkan material-material yang cocok.
Break Down Maintenance.
Kegiatan perawatan yang dilakukan setelah terjadi kerusakan atau kelainan pada peralatan sehingga tidak dapat berfungsi seperti biasanya.
Modification Maintenance.
Pekerjaan yang berhubungan dengan disain suatu peralatan atau unit. Modifikasi bertujuan menambah kehandalan peralatan atau menambah tingkat produksi dan kualitas pekerjaan.
Shut Down Maintenance.
Kegiatan perawatan yang dilakukan terhadap peralatan yang sengaja dihentikan pengoperasiannya.
Sumber: id.wikipedia.org
Pendidikan Vokasi
Dipublikasikan oleh Ririn Khoiriyah Ardianti pada 17 Februari 2025
Diploma (dari bahasa Yunani Kuno δίπλωµα díplōma, artinya "gulungan kertas") adalah sertifikat atau akta yang dikeluarkan oleh lembaga pendidikan seperti kolese atau universitas, yang berisi pernyataan bahwa penerimanya telah berhasil menyelesaikan program studi tertentu,[1] atau (di Amerika Serikat) berisi keterangan mengenai penganugerahan suatu gelar akademik kepada penerimanya.[2] Di beberapa negara, seperti Britania Raya dan Australia, kata diploma juga berarti penghargaan akademik (misalnya diploma perguruan tinggi dan diploma pascasarjana). Dalam sejarah, diploma juga berarti piagam atau dokumen resmi,[1] sehingga memunculkan istilah diplomatik,[3] diplomat[4] dan diplomasi[5] melalui Codex Iuris Gentium Diplomaticus.[3]
Diploma (sebagai pengakuan tertulis atas suatu kualifikasi) dapat pula disebut testamur, kata bahasa Latin yang berarti "kami bersaksi" atau "kami nyatakan" (testari), diambil dari kata pertama isi diploma;[6] istilah ini digunakan di Australia sebagai sebutan untuk dokumen yang berisi pengakuan atas penganugerahan suatu gelar akademik.[7][8][9] Selain itu, secara sederhana diploma dapat pula disebut sertifikat gelar akademik atau sertifikat kelulusan, atau disebut perkamen.[10] Sertifikat bagi seorang penerima Nobel juga disebut diploma.
Dalam beberapa konteks kesejarahan, istilah diploma juga digunakan sebagai sebutan untuk dokumen-dokumen yang ditandatangani oleh seorang raja yang berisi pengakuan anugerah hak milik atau hak guna atas sebidang tanah beserta syarat-syaratnya (lihat Piagam-piagam Anglo-Saxon dan Diplomatika).
Diploma kulit domba dari Kolese Ciudad de México, 1948 (dalam bahasa Latin)
Diploma di Indonesia[sunting | sunting sumber]
Di Indonesia, diploma adalah jenjang pendidikan vokasi. Pendidikan vokasi di Indonesia pada umumnya terdapat di perguruan tinggi politeknik dan akademi, meskipun juga terdapat di berbagai perguruan tinggi umum seperti Universitas, Institut, dan Sekolah Tinggi. Pendidikan Tinggi Politeknik di Indonesia pertama kali didirikan pada era tahun 1970-an dan dewasa ini sudah sampai pada titik kemajuan di mana lulusannya telah disetarakan dengan lulusan Pendidikan Tinggi Teknik lain yang ada di Universitas, Institut, maupun Sekolah Tinggi di Indonesia.
Program Diploma I diarahkan pada hasil lulusan yang menguasai kemampuan dalam melaksanakan pekerjaan yang bersifat rutin atau memecahkan masalah yang sudah akrab sifat-sifat maupun kontekstualnya di bawah bimbingan.
Program Diploma II diarahkan pada hasil lulusan yang menguasai kemampuan dalam melaksanakan pekerjaan yang bersifat rutin, atau memecahkan masalah yang sudah akrab sifat-sifat maupun kontekstualnya secara mandiri, baik dalam bentuk pelaksanaan maupun tanggungjawab pekerjaannya.
Program Diploma III diarahkan pada lulusan yang menguasai kemampuan dalam bidang kerja yang bersifat rutin maupun yang belum akrab dengan sifat-sifat maupun kontekstualnya, secara mandiri dalam pelaksanaan maupun tanggungjawab pekerjaannya, serta mampu melaksanakan pengawasan dan bimbingan atas dasar ketrampilan manajerial yang dimilikinya. Dahulu jenjang Diploma III ini dikenal dengan sebutan Sarjana Muda.
Program Diploma IV diarahkan pada hasil lulusan yang menguasai kemampuan dalam melaksanakan pekerjaan yang kompleks, dengan dasar kemampuan profesional tertentu, termasuk keterampilan merencanakan, melaksanakan kegiatan, memecahkan masalah dengan tanggungjawab mandiri pada tingkat tertentu, memiliki ketrampilan manajerial, serta mampu mengikuti perkembangan, pengetahuan, dan teknologi di dalam bidang keahliannva.
Sebutan profesional Ahli Pratama bagi lulusan Program Diploma I, Ahli Muda bagi lulusan Program Diploma II, Ahli Madya bagi lulusan Program Diploma III dan Sarjana Sains Terapan bagi lulusan Program Diploma IV ditempatkan di belakang nama pemilik hak atas penggunaan sebutan yang bersangkutan.
Sumber Artikel : Wikipedia
Perindustrian
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 17 Februari 2025
Trinusa Travelindo, yang dikenal sebagai Traveloka, adalah sebuah perusahaan teknologi Indonesia yang berspesialisasi dalam layanan perjalanan dan tiket. Berkantor pusat di Jakarta, perusahaan ini mengoperasikan situs web yang populer dan melayani enam negara. Didirikan pada tahun 2012 sebagai mesin pencari perjalanan, Traveloka telah memperluas penawarannya dengan memasukkan tiket atraksi, aktivitas, penyewaan transportasi, dan voucher restoran. Selain itu, Traveloka juga menyediakan layanan keuangan seperti kredit dan asuransi. Dengan valuasi sekitar $3 miliar pada tahun 2022, Traveloka diklasifikasikan sebagai perusahaan unicorn dan sering disamakan dengan Expedia untuk berbagai layanannya.
Sejarah
Pada awal tahun 2012, tiga insinyur perangkat lunak Indonesia yang saat itu bekerja di Silicon Valley memiliki ide untuk mendirikan sebuah perusahaan travel online. Ferry Unardi, Albert, dan Derianto Kusuma (jeda 5 detik) mengalami kesulitan saat melakukan perjalanan di Indonesia, sehingga mereka memutuskan untuk membangun sebuah situs web untuk memudahkan logistik perjalanan di negara ini.
Traveloka secara resmi diluncurkan pada bulan September 2012 sebagai situs metasearch untuk penerbangan di Indonesia. Dalam waktu singkat, perusahaan ini berhasil menarik investasi awal dan bertransisi menjadi biro perjalanan online yang lengkap. Mereka menawarkan berbagai metode pembayaran (jeda 3 detik) dan menerapkan layanan pelanggan 24 jam dalam beberapa bahasa.
Setelah meraih kesuksesan di Indonesia, Traveloka mulai berekspansi ke negara-negara tetangga di Asia Tenggara pada tahun 2015. Mereka membuka kantor regional di Thailand, Singapura, Malaysia, Filipina, dan Vietnam. (Jeda 4 detik) Layanan Traveloka terus berkembang, mulai dari pemesanan hotel, tiket kereta api, hingga paket liburan yang lengkap.
Pada tahun 2017, Traveloka mendapatkan pendanaan sebesar $350 juta dari investor global, menjadikannya perusahaan unicorn dengan valuasi lebih dari $1 miliar. Pendanaan ini digunakan untuk mengembangkan teknologi kecerdasan buatan dan memperluas jangkauan bisnis.
Ketika pandemi COVID-19 melanda pada tahun 2020, bisnis travel Traveloka sempat terpukul. Namun, perusahaan dengan cepat beradaptasi dengan meluncurkan fitur-fitur baru seperti (jeda 3 detik) "Beli Sekarang, Bayar Nanti" untuk menawarkan fleksibilitas dalam pemesanan. Selain itu, mereka juga memperluas layanan mereka ke pengalaman online seperti kelas memasak virtual.
Dalam upaya memulihkan arus kas, Traveloka mengadakan flash sale online dan menawarkan paket tes COVID-19 yang terintegrasi. Strategi-strategi inovatif ini membantu Traveloka bertahan dari krisis dan kembali meraih keuntungan pada akhir 2020.
Saat ini, Traveloka telah bangkit kembali dan terus memperluas jaringan hotelnya, termasuk kemitraan dengan jaringan hotel Accor di 13 negara pada April 2022. Dengan valuasi baru-baru ini sebesar $3 miliar, Traveloka mengukuhkan posisinya sebagai pemain utama dalam industri perjalanan online di Asia Tenggara.
Website Traveloka
Traveloka adalah platform online serbaguna yang melayani berbagai kebutuhan, mulai dari perjalanan hingga layanan lokal dan solusi keuangan. Dengan antarmuka yang mudah digunakan dan tersedia dalam berbagai bahasa, Traveloka telah mengumpulkan lebih dari 100 juta unduhan dan memiliki sekitar 40 juta pengguna aktif bulanan. Menawarkan berbagai produk dan layanan yang komprehensif, Traveloka memfasilitasi pemesanan yang mudah untuk penerbangan, akomodasi, transportasi, dan banyak lagi.
Situs web ini menampilkan daftar dari lebih dari 150 maskapai penerbangan dan jutaan hotel, vila, dan penginapan di 100 negara. Selain itu, Traveloka juga menyediakan penawaran gaya hidup seperti tiket atraksi, aktivitas, penyewaan mobil, dan voucher restoran. Dukungan pelanggan tersedia sepanjang waktu dalam bahasa lokal, memastikan pengalaman yang lancar bagi pengguna di seluruh dunia.
Dalam hal layanan keuangan, Traveloka menyediakan pilihan manajemen kekayaan, asuransi, pembiayaan, dan kredit. Selain itu, Traveloka juga menawarkan fitur unik seperti Buy Now Stay Later untuk pemesanan akomodasi dan LIVEstyle untuk live streaming. Dengan beragam penawaran dan fitur inovatifnya, Traveloka terus mendefinisikan ulang lanskap perjalanan dan layanan online.
Disadur dari: en.wikipedia.org
Perindustrian
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 17 Februari 2025
OVO, platform pembayaran digital di bawah PT Visionet Internasional, berkantor pusat di Jakarta, Indonesia. Diluncurkan pada tahun 2017 dengan otorisasi dari Bank Indonesia, OVO dengan cepat menjadi terkenal dan mengamankan posisinya sebagai layanan pembayaran digital terdepan di Indonesia pada tahun 2019. Didukung oleh Grab dan investor lokal, OVO mencetak sejarah di tahun 2019 dengan menjadi unicorn teknologi finansial pertama di Indonesia.
Sejarah
OVO, yang lahir dari Grup Lippo, mendapatkan persetujuan regulator sebagai entitas fintech di seluruh Indonesia pada bulan September 2017, dengan mendapatkan lisensi uang elektronik dari Bank Indonesia. Dioperasikan di bawah PT Visionet International, perusahaan layanan keuangan digital milik Grup Lippo, OVO memperkenalkan dompet digitalnya pada September 2017. Tokyo Century Corporation melakukan investasi penting sebesar US$116 juta pada bulan Desember 2017, dengan mengakuisisi 20% saham perusahaan. OVO memperluas penawaran keuangannya pada tahun 2018, menarik investasi dari Grab.
Tokopedia, raksasa e-commerce Indonesia, bergabung dengan jajaran investor pada bulan Maret 2019, meningkatkan valuasi OVO menjadi US$2,9 miliar. Pada bulan Oktober 2019, OVO meraih status unicorn, menjadi unicorn teknologi finansial pertama di Indonesia dan unicorn kelima di Indonesia secara keseluruhan. Pergantian kepemimpinan terjadi pada tahun 2019, dengan Karaniya Dharmasaputra ditunjuk sebagai presiden direktur.
Grab meningkatkan kepemilikan sahamnya di OVO menjadi 79,5% pada tahun 2021, dan kemudian mencapai 90% kepemilikan setelah mengakuisisi saham dari Tokopedia dan Lippo Group pada Oktober 2021. Dyak NK Makhijani mengambil peran sebagai Presiden Komisaris di PT Visionet Internasional pada Agustus 2022, menandai kepemilikan dominan Grab atas OVO.
Produk dan layanan
OVO, yang terutama berfokus pada pembayaran digital dengan lisensi uang elektroniknya, muncul sebagai dompet digital terkemuka di Indonesia untuk transaksi online dan offline, berdasarkan laporan tahun 2021 oleh Kadence International.
Selain bisnis intinya, OVO merambah ke bidang jasa keuangan, menawarkan fasilitas pinjaman melalui Taralite, sebuah perusahaan pinjaman P2P yang diakuisisi pada tahun 2019. OVO juga menyediakan produk investasi dan asuransi melalui kolaborasi dengan mitra di bawah OVO | Investasikan dan OVO | Proteksi masing-masing.
Berkolaborasi dengan pemain kunci seperti Adira Finance, Bank BRI, Manulife Aset Manajemen Indonesia, dan Prudential Indonesia, OVO memperluas rangkaian layanan keuangannya untuk memenuhi beragam kebutuhan konsumen.
Disadur dari: en.wikipedia.org
Operation Research and Analysis
Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 17 Februari 2025
Benchmarking
Benchmarking melibatkan perbandingan proses bisnis dan metrik kinerja dengan praktik terbaik industri dan praktik perusahaan lain. Dimensi yang biasa diukur meliputi kualitas, waktu dan biaya. Proses ini menggunakan metrik tertentu seperti biaya per unit, produktivitas per unit, waktu siklus per unit, atau cacat per unit untuk memperoleh indikator kinerja utama yang kemudian dibandingkan dengan kinerja perusahaan lain.
Benchmarking, juga dikenal sebagai "benchmarking praktik terbaik" atau "benchmarking proses", digunakan dalam manajemen di mana organisasi mengevaluasi aspek-aspek tertentu dari proses mereka terhadap proses praktik terbaik industri perusahaan lain, biasanya dalam satu kelompok rekan terpelajar untuk tujuan perbandingan. Hal ini memungkinkan perusahaan untuk merencanakan perbaikan atau mengadopsi praktik terbaik untuk meningkatkan kinerja mereka. Meskipun merupakan peristiwa yang terisolasi, benchmarking sering dipandang sebagai proses berkelanjutan dimana perusahaan terus berupaya untuk meningkatkan praktik mereka.
Dalam manajemen proyek, benchmarking juga dapat mendukung pemilihan, perencanaan dan pelaksanaan proyek. Dalam pembandingan praktik terbaik, manajemen mengidentifikasi perusahaan terbaik di industrinya atau industri serupa dengan membandingkan hasil dan proses yang diperiksa dengan hasil dan proses perusahaannya sendiri. Tujuannya adalah untuk memahami kinerja perusahaan yang paling sukses dan mengidentifikasi proses bisnis yang menjelaskan kesuksesan mereka. Benchmarking dapat digunakan sebagai alat penilaian berkelanjutan untuk membantu organisasi terus meningkatkan praktik mereka berdasarkan standar industri atau praktik terbaik yang teridentifikasi.
Sejarah
Analisis komparatif yang berawal dari sejarah senjata dan amunisi memiliki tujuan yang sesuai dengan kondisi perekonomian, yaitu perbandingan dan peningkatan kinerja. Pengenalan senjata mesiu secara historis telah mengubah dinamika pertempuran, seperti halnya benchmarking yang telah mengubah pendekatan terhadap bisnis. Analogi ini dibuat dengan peralihan dari busur dan anak panah ke senjata, yang mengubah peran pemanah menjadi penembak jitu. Seiring berkembangnya industri senjata api di abad ke-19, produksi massalamunisi menggantikan pemuatan tangan, sehingga menciptakan kebutuhan untuk menemukan kombinasi senapan dan amunisi terbaik.
Pada tahun 2008, studi mendalam yang dilakukan oleh Global Benchmarking Network menemukan bahwa alat perbaikan yang paling umum digunakan adalah misi dan visi, survei pelanggan, analisis SWOT, dan benchmarking informal.Tolok ukur kinerja dan praktik terbaik juga digunakan dan tren ini akan terus semakin populer di masa depan. Analisis ini menjelaskan secara rinci penggunaan benchmarking dalam berbagai alat manajemen serta menjelaskan perkembangan dan perkiraan penggunaannya.
Prosedur
Tidak ada proses benchmarking tunggal yang telah diadopsi secara universal. Daya tarik yang luas dan penerimaan benchmarking telah menyebabkan munculnya metodologi benchmarking. Satu buku mani adalah Benchmarking Boxwell untuk Keunggulan Kompetitif (1994). Buku pertama tentang benchmarking, ditulis dan diterbitkan oleh Kaiser Associates, adalah panduan praktis dan menawarkan pendekatan tujuh langkah. Robert Camp (yang menulis salah satu buku paling awal tentang benchmarking pada tahun 1989) mengembangkan pendekatan 12-tahap untuk benchmarking.
Metodologi 12 tahap terdiri dari:
Berikut ini adalah contoh metodologi benchmarking yang khas:
Biaya
Tiga jenis biaya utama dalam benchmarking adalah:
Biaya benchmarking secara substansial dapat dikurangi dengan memanfaatkan banyak sumber daya internet yang bermunculan selama beberapa tahun terakhir. Ini bertujuan untuk menangkap tolok ukur dan praktik terbaik dari organisasi, sektor bisnis, dan negara untuk membuat proses pembandingan lebih cepat dan lebih murah.
Pembandingan teknis/produk
Teknik yang awalnya digunakan untuk membandingkan strategi perusahaan yang ada dengan pandangan untuk mencapai kinerja terbaik dalam situasi baru (lihat di atas), baru-baru ini diperluas ke perbandingan produk teknis. Proses ini biasanya disebut sebagai “technical benchmarking” atau “product benchmarking”. Penggunaannya dikembangkan dengan baik dalam industri otomotif ("pembandingan otomotif"), di mana sangat penting untuk merancang produk yang sesuai dengan harapan pengguna yang tepat, dengan biaya minimal, dengan menerapkan teknologi terbaik yang tersedia di seluruh dunia. Data diperoleh dengan sepenuhnya membongkar mobil yang ada dan sistemnya. Analisis tersebut awalnya dilakukan di rumah oleh pembuat mobil dan pemasok mereka. Namun, karena analisis ini mahal, mereka semakin banyak dialihdayakan ke perusahaan yang berspesialisasi dalam bidang ini. Outsourcing telah memungkinkan penurunan drastis dalam biaya untuk setiap perusahaan (dengan pembagian biaya) dan pengembangan alat yang efisien (standar, perangkat lunak).
Jenis
Benchmarking dapat bersifat internal (membandingkan kinerja antara kelompok atau tim yang berbeda dalam suatu organisasi) atau eksternal (membandingkan kinerja dengan perusahaan dalam industri tertentu atau lintas industri). Dalam kategori yang lebih luas ini, ada tiga jenis pembandingan khusus: 1) Pembandingan proses, 2) Pembandingan kinerja, dan 3) Pembandingan strategis. Hal-hal tersebut dapat dirinci lebih lanjut sebagai berikut:
Peralatan
Perangkat lunak benchmarking dapat digunakan untuk mengatur sejumlah besar dan kompleks informasi. Paket perangkat lunak dapat memperluas konsep pembandingan dan analisis kompetitif dengan memungkinkan individu untuk menangani jumlah atau strategi yang begitu besar dan kompleks. Alat tersebut mendukung berbagai jenis pembandingan (lihat di atas) dan dapat mengurangi biaya di atas secara signifikan.
Teknologi mesin benchmarking yang muncul mengotomatiskan tahap beralih dari data ke wawasan komparatif yang patut diperhatikan, kadang-kadang bahkan mengungkapkan wawasan dalam kalimat bahasa Inggris.
Pembandingan metrik
Pendekatan lain untuk membuat perbandingan melibatkan penggunaan informasi biaya atau produksi yang lebih agregat untuk mengidentifikasi unit berkinerja kuat dan lemah. Dua bentuk analisis kuantitatif yang paling umum digunakan dalam benchmarking metrik adalah data envelopment analysis (DEA) dan analisis regresi. DEA memperkirakan tingkat biaya yang harus dapat dicapai oleh perusahaan yang efisien di pasar tertentu. Dalam regulasi infrastruktur, DEA dapat digunakan untuk memberi penghargaan kepada perusahaan/operator yang biayanya mendekati batas efisien dengan keuntungan tambahan. Analisis regresi memperkirakan apa yang rata-rata perusahaan harus dapat capai. Dengan analisis regresi, perusahaan yang berkinerja lebih baik dari rata-rata dapat diberi penghargaan sementara perusahaan yang berkinerja lebih buruk dari rata-rata dapat dihukum. Studi benchmarking tersebut digunakan untuk membuat perbandingan tolok ukur, yang memungkinkan pihak luar untuk mengevaluasi kinerja operator dalam suatu industri. Teknik statistik canggih, termasuk analisis garis batas stokastik, telah digunakan untuk mengidentifikasi kinerja tinggi dan lemah dalam industri, termasuk aplikasi ke sekolah, rumah sakit, utilitas air, dan utilitas listrik.
Salah satu tantangan terbesar untuk benchmarking metrik adalah berbagai definisi metrik yang digunakan di antara perusahaan atau divisi. Definisi dapat berubah dari waktu ke waktu dalam organisasi yang sama karena perubahan dalam kepemimpinan dan prioritas. Perbandingan yang paling berguna dapat dibuat ketika definisi metrik sama antara unit yang dibandingkan dan tidak berubah sehingga perbaikan dapat diubah.
Disadur dari : en.wikipedia.org
Pendidikan Vokasi
Dipublikasikan oleh Ririn Khoiriyah Ardianti pada 17 Februari 2025
Pendampingan atau lebih dikenal dengan istilah Mentorship. Mentorship berakar kata dari Mentor dalam Kamus Besar Bahasa Indonesia (KBBI) memiliki makna pembimbing atau pengasuh. Secara istilah ditemukan banyak sekali definisi terhadap kata Mentoring, tercatat hingga tahun 2007 ada lebih dari 50 definisi yang menggambarkan makna dari Mentoring. Dalam buku karya Gendro Salim yang berjudul Effective Coaching, ia memberikan memaknai Mentoring sebagai sebuah aktivitas bimbingan dari seseorang yang sudah sangat menguasai hal-hal tertentu dan membagikan ilmunya kepada orang yang membutuhkannya. Orang yang melakukan kegiatan mentoring disebut dengan Mentor sedangkan orang yang di-mentor-i disebut Mentee.
Perbedaan Mentoring (Pendampingan) dan Coaching
Kedua terminologi ini sering kali dianggap memiliki makna yang sama. bahkan tidak jarang orang-orang mengunakan terma ini dalam ranah yang sama. berikut ini adalah perbedaan antara Mentoring dan Coaching.
Coaching
Mentoring
Sumber Artikel : Wikipedia