Geodesi dan Geomatika
Dipublikasikan oleh Merlin Reineta pada 18 Juli 2022
Ahli Vulkanologi Institut Teknologi Bandung Dr.Eng. Mirzam Abdurrachman, S.T., M.T., mengatakan, material aliran lahar yang terjadi di Gunung Semeru merupakan akumulasi dari letusan sebelumnya yang menutupi kawah gunung tersebut. “Terkikisnya material abu vulkanik yang berada di tudung gunung tersebut membuat beban yang menutup Semeru hilang sehingga membuat gunung mengalami erupsi,” katanya, Minggu (5/12/2021).
Sebelumnya diberitakan, Gunung Semeru erupsi pada Sabtu sore, (4/12/2021) sekitar pukul 14:50 WIB. Mengutip dari Magma Indonesia, visual letusan tidak teramati akan tetapi erupsi ini terekam di seismograf dengan amplitudo maksimum 25 mm dan durasi 5160 detik. Menurut Dr. Mirzam, saat terjadi erupsi warga cenderung tidak merasakan adanya gempa, akan tetapi tetap terekam oleh seismograf. Hal ini disebabkan oleh sedikitnya material yang berada di dalam dapur magma.
*Detik-detik erupsi Gunung Semeru. Sumber: Twitter BNPB
Dia menjelaskan, kenapa Gunung Semeru bisa meletus. Ada tiga hal yang menyebabkan sebuah gunung api bisa meletus. Pertama karena volume di dapur magmanya sudah penuh, kedua karena ada longsoran di dapur magma yang disebabkan terjadinya pengkristalan magma, dan yang ketiga di atas dapur magma.
“Faktor yang ketiga ini sepertinya yang terjadi di Semeru, jadi ketika curah hujannya cukup tinggi, abu vulkanik yang menahan di puncaknya baik dari akumulasi letusan sebelumnya, terkikis oleh air, sehingga gunung api kehilangan beban. Sehingga meskipun isi dapur magmanya sedikit yang bisa dilihat dari aktivitas kegempaan yang sedikit (hanya bisa diditeksi oleh alat namun tidak dirasakan oleh orang yang tinggal di sekitarnya), Semeru tetap bisa erupsi,” jelasnya.
Dosen pada Kelompok Keahlian Petrologi, Vulkanologi, dan Geokimia, Fakultas Ilmu dan Teknologi Kebumian (FITB) itu mengatakan, Gunung Semeru merupakan salah satu gunung api aktif tipe A. Berdasarkan data dan pengamatan yang dilakukan, Dr. Mirzam berkesimpulan bahwa Gunung Semeru memiliki interval letusan jangka pendeknya 1-2 tahun. Terakhir tercatat pernah juga mengalami letusan di tahun 2020 juga di bulan Desember. “Letusan kali ini, volume magmanya sebetulnya tidak banyak, tetapi abu vulkaniknya banyak sebab akumulasi dari letusan sebelumnya,” jelasnya.
Namun menurutnya Dr. Mirzam, arah letusan gunung Semeru bisa diprediksi yaitu mengarah ke tenggara. Hal ini karena mengacu pada peta Geologi Semeru, bidang tempat lahirnya gunung ini tidak horizontal tetapi miring ke arah selatan. “Kalau kita mengacu pada letusan 2020, arah abu vulkaniknya itu cenderung ke arah tenggara dan selatan karena anginnya berhembus ke arah tersebut begitu juga dengan aliran laharnya karena semua suangai yang berhulu ke puncak Semeru semua merngalir kea rah selatan dan tenggara,” ujarnya.
*Arah erupsi Gn. Semeru. Sumber: Dr. Mirzam Abdurrachman
Mirzam mengindikasikan abu vulkanik gunung semeru cenderung berat yang ditandai dengan warnanya yang abu-abu pekat. Hal tersebut terlihat dari visual di puncak Gunung Semeru. Sehingga ketika letusan-letusan sebelumnya terjadi, abu vulkaniknya jatuh menumpuk di hanya di sekitar area puncak gunung semeru, ini yang menjadi cikal bakal melimpahnya material lahar letusan 2021.
*Foto satelit puncak Gn. Semeru. Sumber: Dr. Mirzam Abdurrachman.
Bahaya Erupsi Gunung Meletus
Dr. Mirzam mengatakan, bahaya dari gunung api secara umum ada dua, yaitu primer dan sekunder. Bahaya primer berkaitan dengan saat gunung meletus dan bahaya sekunder setelah gunung api tersebut meletus. Bahaya primer dari letusan ialah aliran lava, wedus gembel, dan abu vulkanik. Sementara bahaya sekunder salah satunya terjadinya banjir bandang atau pun lahar. “Dua-duanya sama-sama berbahaya,” ujarnya.
Sumber Artikel : itb.ac.id/news
Geodesi dan Geomatika
Dipublikasikan oleh Merlin Reineta pada 18 Juli 2022
Gunung berapi atau gunung api atau vulkan secara umum adalah istilah yang dapat didefinisikan sebagai suatu sistem saluran fluida panas (batuan dalam wujud cair atau lava) yang memanjang dari kedalaman sekitar 10 km di bawah permukaan bumi sampai ke permukaan bumi, termasuk endapan hasil akumulasi material yang dikeluarkan pada saat meletus.
Gunung berapi di Bumi terbentuk dikarenakan keraknya terpecah menjadi 17 lempeng tektonik utama yang kaku dan mengambang di atas lapisan mantel yang lebih panas dan lunak. Oleh karena itu, gunung berapi di Bumi sering ditemukan di batas divergen dan konvergen dari lempeng tektonik. Gunung berapi biasanya tidak terbentuk di wilayah dua lempeng tektonik bergeser satu sama lain.
Bahaya dari debu vulkanik adalah terhadap penerbangan khususnya pesawat jet karena debu tersebut dapat merusak turbin dari mesin jet. Letusan besar dapat mempengaruhi suhu dikarenakan asap dan butiran asam sulfat yang dimuntahkan letusan dapat menghalangi matahari dan mendinginkan bagian bawah atmosfer bumi seperti troposfer, tetapi material tersebut juga dapat menyerap panas yang dipancarkan dari bumi sehingga memanaskan stratosfer.
Lebih lanjut, istilah "gunung api" juga dipakai untuk menamai fenomena pembentukan ice volcano (gunung api es) dan mud volcano (gunung api lumpur). Gunung api es biasa terjadi di daerah garis lintang tinggi yang mempunyai musim dingin bersalju.
Gunung berapi terdapat di seluruh dunia, tetapi lokasi gunung berapi yang paling dikenali adalah gunung berapi yang berada di sepanjang busur Cincin Api Pasifik (Pacific Ring of Fire). Busur Cincin Api Pasifik merupakan garis bergeseknya antara dua lempengan tektonik dan lebih, dimana Lempeng Pasifik saling bergesek dengan lempeng-lempeng tetangganya.
Gunung berapi dapat dijumpai dalam beberapa bentuk sepanjang masa hidupnya. Gunung berapi yang aktif mungkin berubah fase menjadi separuh aktif, istirahat, sebelum akhirnya menjadi tidak aktif atau mati. Namun gunung berapi mampu istirahat dalam waktu yang sangat lama, lebih dari ribuan tahun sebelum berubah menjadi aktif kembali.
Letusan gunung berapi terjadi apabila magma naik melintasi kerak bumi dan muncul di atas permukaan. Apabila gunung berapi meletus, magma yang terkandung di dalam kamar magma di bawah gunung berapi meletus keluar sebagai lava, dimana lava ini dapat berubah menjadi lahar setelah mengalir dan bercampur dengan material-material di permukaan bumi. Selain dari aliran lava, kehancuran yang disebabkan oleh letusan gunung berapi.
Ilmu yang mempelajari gunung berapi dinamakan Vulkanologi, dimana ilmu ini mempelajari letusan gunung berapi untuk tujuan memperkirakan kemungkinan letusan yang bisa terjadi dari suatu gunung berapi, sehingga dampak negatif letusan gunung berapi dapat ditekan.
Wilayah pembentukan
Gunung berapi di Bumi terbentuk dari aktivitas lempeng tektonik di kerak yang saling bergesekan dan menekan satu sama lain. Oleh karenanya gunung berapi banyak ditemukan dekat dengan perbatasan lempeng tektonik. Secara geologis, Wilayah dimana gunung berapi terbentuk dibagi tiga, yaitu:
Batas divergen antar lempeng
Apabila kedua lempeng tektonik bergerak saling menjauhi satu sama lain, maka kerak samudra yang baru akan terbentuk dari keluarnya magma ke permukaan dasar laut. Wilayah antara kedua lempeng yang saling menjauh ini dinamakan dengan batas divergen. Aktivitas ini lalu akan memunculkan Punggung tengah samudra yang terbentuk dari pendinginan magma yang muncul ke permukaan. Gunung berapi yang terbentuk dari aktivitas ini berada di bawah laut, yang ditandai dengan fenomena Ventilasi hidrotermal. Apabila punggung tengah samudra ini mencuat sampai ke permukaan laut, maka kepulauan vulkanik akan terbentuk, contohnya adalah Islandia.
Batas konvergen antar lempeng
Berbeda dengan batas divergen yang tercipta dari pergerakan kedua lempeng tektonik yang saling menjauh, Batas konvergen antar lempeng merupakan wilayah dimana dua lempeng atau lebih bertemu lalu saling menekan dan mengalami subduksi sehingga tepian di satu lempeng menindih tepian yang lain. Penindihan lempeng ini ditandai dengan terbentuknya bentang alam berupa palung di dasar laut. Fenomena ini menimbulkan melelehnya material yang terdapat di mantel bumi, sehingga material tersebut menjadi magma dan naik ke permukaan kerak yang tipis. Gunung berapi di wilayah ini terbentuk dari pertemuan antara kedua lempeng kerak samudra atau antara lempeng kerak samudra dan benua. Pertemuan antara kedua lempeng kerak benua biasanya tidak memicu pembentukan gunung berapi dikarenakan kerak benua memiliki ketebalan yang tidak dapat ditembus oleh magma di bawah permukaan. Contoh dari gunung berapi ini adalah jajaran gunung berapi di Cincin Api Pasifik, atau Gunung Etna di Italia.
Titik panas
Titik panas merupakan suatu wilayah vulkanik dimana magma naik ke permukaan dikarenakan adanya celah di kerak bumi yang memungkinkan pergerakan tersebut. Titik panas dapat ditemukan jauh dari batas antar kedua lempeng tektonik. Pergerakan ini memunculkan gunung berapi yang memiliki ciri letusan efusif yang lemah dimana lava muncul ke permukaan secara halus. Dikarenakan lempeng tektonik terus bergerak secara perlahan, wilayah titik panas dapat membentuk gunung berapi yang berbeda-beda sesuai dengan jalur pergerakan suatu lempeng. Kepulauan Hawaii merupakan kepulauan yang terbentuk dari aktivitas vulkanik di titik panas di Samudra Pasifik.
Jenis gunung berapi berdasarkan bentuknya
Tersusun dari batuan aliran lava yang dengan kekentalan rendah yang membeku, sehingga tidak sempat membentuk suatu kerucut yang tinggi (curam), bentuknya akan berlereng landai, dan susunannya terdiri dari batuan yang bersifat basaltik. Gunung seperti ini umumnya hanya mengalami erupsi efusif yang relatif lemah. Contoh bentuk gunung berapi ini terdapat di kepulauan Hawai, Islandia, dan Afrika Timur.
Potongan melintang sebuah stratovulkan (tidak sesuai skala):
Tersusun dari tefra dan lava hasil erupsi dengan tipe letusan berubah-ubah sehingga dapat menghasilkan susunan yang berlapis-lapis dari beberapa jenis batuan. Lapisan lava tersebut kemudian terakumulasi hingga membentuk suatu kerucut besar (raksasa) yang terkadang memiliki bentuk tidak beraturan. Gunung Merapi di Yogyakarta, Gunung Fuji di Jepang, Gunung Mayon di Filipina, Gunung Vesuvius, dan Gunung Stromboli di Italia merupakan contoh dari gunung berapi jenis ini.
Lava yang berasal dari stratovulkan umumnya mengandung lebih banyak gas dan silikadaripada lava yang dihasilkan oleh gunung berapi tipe perisai. Kombinasi ini menyebabkan lava dari stratovulkan menjadi lebih kental dan menghasilkan lebih banyak abu vulkanik. Gunung berapi tipe stratovulkan juga memiliki lereng yang cukup curam, contohnya Gunung Popocatépetl yang lerengnya memiliki gradien rata-rata sekitar 14,04° (25%) dan gradien maksimum sebesar 32,21° (63%).
Kerucut bara (Cinder cone)
Merupakan gunung berapi yang abu dan pecahan kecil batuan vulkanik menyebar di sekeliling gunung. Sebagian besar gunung jenis ini membentuk mangkuk di puncaknya. Jarang yang tingginya di atas 500 meter dari tanah di sekitarnya.
Gunung berapi jenis ini terbentuk dari ledakan yang sangat kuat di masa lalu yang melempar bagian atas dan tepi gunung sehingga membentuk cekungan. Gunung Bromo merupakan jenis ini, dimana kaldera tengger yang ada pada saat ini merupakan hasil letusan besar di masa lalu.
Maar merupakan gunung berapi dengan ketinggian rendah dan diameter kepundan yang lebar, dimana gunung berapi ini terbentuk dari letusan freatomagmatik yang disebabkan oleh tercampurnya magma dengan air di bawah tanah. Saat tidak aktif, maar biasanya terisi oleh air sehingga tampak seperti sebuah danau biasa.
Klasifikasi gunung berapi berdasarkan aktivitas vulkanik
Gunung-gunung berapi memiliki perbedaan pada tingkat aktivitasnya. Beberapa gunung berapi dapat meletus beberapa kali dalam setahun, tetapi ada pula yang hanya meletus tiap puluhan ribu tahun sekali. Gunung berapi dapat diklasifikasikan secara informal sebagai aktif, tidur, atau mati, meskipun batasan dari klasifikasi ini tidak begitu jelas.
Aktif
Erupsi Gunung Rinjani pada tahun 1994
Tidak ada konsensus yang mampu mendefinisikan kapan gunung berapi dikatakan "aktif". Umur dari sebuah gunung berapi bervariasi, mulai dari beberapa minggu hingga jutaan tahun. Umur yang panjang ini terkadang jauh melampaui umur manusia atau bahkan peradaban di Bumi. Contohnya, sebuah gunung berapi telah meletus puluhan kali dalam beberapa ribu tahun terakhir, meskipun gunung tersebut saat ini tidak menunjukkan tanda-tanda aktivitas vulkanik. Kondisi ini merupakan contoh gunung yang sebenarnya aktif, tetapi tampak mati bagi manusia yang berumur jauh lebih pendek dibandingkan gunung tersebut.
Ilmuan biasanya menganggap sebuah gunung berapi mengalami erupsi atau akan mengalami erupsi berdasarkan beberapa faktor seperti aktivitas kegempaan, emisi gas dari gunung, dan sebagainya. Sebagian besar ilmuwan menganggap gunung berapi "aktif" apabila gunung tersebut pernah mengalami erupsi dalam kurun waktu 10.000 tahun (masa holosen)—kriteria yang sama juga digunakan oleh Program Global Volcanism Smithsonian. Hingga September 2020, program tersebut mencatat 1420 gunung berapi aktif yang pernah mengalami erupsi pada masa Holosen. Sebagian besar gunung berapi tersebut terletak di Cincin Api Pasifik dan lebih dari 500 juta orang tinggal di dekat gunung berapi.
Dasar lain yang digunakan dalam menentukan apakah gunung berapi aktif atau tidak adalah menggunakan catatan sejarah. Dasar ini sebenarnya menimbulkan masalah baru karena catatan sejarah pada setiap daerah di dunia berbeda-beda. Di Tiongkok dan daerah Mediterania, catatan sejarah mencatat peristiwa yang terjadi hingga 3000 tahun yang lalu, tetapi catatan sejarah di barat laut Amerika Serikat dan Kanada hanya mencatat peristiwa yang terjadi kurang dari 300 tahun yang lalu. Sejarah di Hawaii dan Selandia Baru bahkan hanya mencatat peristiwa yang terjadi sekitar 200 tahun yang lalu. Meskipun demikian, Catalogue of the Active Volcanoes of the World yang diterbikan per bagian oleh Asosiasi Vulkanologi Internasional antara tahun 1951 dan 1975 menggunakan dasar ini untuk menyematkan status aktif pada 500 gunung berapi di dunia.
Hingga tahun 2021, berikut adalah lima dari gunung berapi paling aktif di Indonesia:
Tidur
Gunung berapi tidur adalah gunung berapi yang tidak pernah tercatat mengalami erupsi, tetapi bisa mengalami erupsi lagi di masa mendatang. Gunung berapi dapat tetap bertahan pada status ini dalam waktu yang lama, seperti Yellowstone yang telah berada pada masa istirahat sejak 70.000 tahun yang lalu. Contoh lainnya adalah Gunung Sinabung yang telah beristirahat setidaknya selama 1200 tahun hingga akhirnya kembali menunjukkan aktivitas vulkanik pada tahun 2010.
Mati
Gunung Fourpeaked di Alaska yang erupsi pada September 2006 setelah disangka sebagai gunung mati
Gunung berapi mati atau padam adalah gunung berapi yang tidak pernah tercatat mengalami erupsi dan kemungkinan tidak akan mengalami erupsi karena tidak lagi memiliki suplai magma. Contoh dari gunung berapi mati adalah, Gunung Hohentwiel di Jerman, Gunung Shiprock di New Mexico, dan Gunung Zuidwal di Belanda. Istilah gunung mati sebenarnya masih diperdebatkan karena umur gunung jauh lebih panjang daripada umur manusia yang mengamatinya. Beberapa gunung bahkan mengalami erupsi setelah dinyatakan sebagai gunung mati, seperti Gunung Fourpeaked di Alaska yang meletus pada tahun 2006 tanpa adanya catatan aktivitas vulkanik selama masa holosen.
Klasifikasi gunung berapi berdasarkan frekuensi letusan di Indonesia
Kalangan vulkanologi Indonesia mengelompokkan gunung berapi ke dalam tiga tipe berdasarkan catatan sejarah letusan/erupsinya.
Skema peringatan gunung berapi di Indonesia
Tingkatan status gunung berapi di Indonesia menurut Badan Geologi Kementerian ESDM
StatusMaknaTindakanAWAS
SIAGA
WASPADA
NORMAL
Jenis erupsi
Secara umum, erupsi gunung berapi dibagi menjadi erupsi magmatik, freatomagmatik, dan freatik.
Erupsi magmatik
Erupsi magmatik disebabkan oleh pelepasan gas akibat peristiwa dekompresi. Magma dengan kekentalan rendah dan sedikit kandungan gas akan menghasilkan erupsi yang relatif lemah. Sebaliknya, magma kental yang memiliki kandungan gas dalam jumlah yang besar dapat menghasilkan erupsi yang kuat. Jenis erupsi berikut merupakan erupsi yang namanya berasal dari peristiwa sejarah:
Intensitas erupsi gunung berapi diukur menggunakan Volcanic Explosivity Index (VEI) yang memiliki rentang skala 0 untuk erupsi Hawaiian, hingga skala 8 untuk erupsi megakolosal.
Erupsi freatomagmatik
Erupsi freatomagmatik diawali dengan interaksi antara magma dengan air tanah. Akibat adanya perbedaan temperatur yang signifikan, terjadi kenaikan tekanan dalam waktu singkat yang berujung pada ledakan. Ledakan tersebut melontarkan uap air dan pecahan piroklastik ke udara. Tidak seperti erupsi freatik, erupsi freatomagmatik juga melontarkan partikel juvenil.
Erupsi freatik
Sama seperti erupsi freatiomagmatik, erupsi freatik disebabkan oleh kontak antara air tanah dengan batuan panas atau magma. Ledakan kemudian terjadi akibat adanya peningkatan temperatur air dalam waktu yang singkat. Erupsi ini hanya melontarkan uap dan bagian dari dinding kawah.
Material erupsi
Material yang dilepaskan oleh gunung berapi saat erupsi dapat diklasifikasikan menjadi tiga jenis:
Gas vulkanik
Konsentrasi gas vulkanik dari erupsi satu gunung bisa berbeda dari gunung lainnya. Gas vulkanik dapat berupa hidrogen sulfida, sulfur dioksida, hidrogen klorida, dan hidrogen fluorida. Gas lain berupa hidrogen, nitrogen, dan karbon monoksida juga termasuk gas vulkanik yang dierupsikan gunung berapi.
Aliran lava
Bentuk dan tipe erupsi gunung berapi bergantung pada komposisi lava yang dierupsikannya. Karakteristik paling penting dari magma adalah kekentalandan jumlah gas yang terlarut di dalamnya. Kedua karakteristik tersebut juga dipengaruhi oleh jumlah kandungan silika pada magma. Magma yang mengandung banyak silika cenderung lebih kental dan mengandung lebih banyak gas daripada magma yang mengandung lebih sedikit kandungan silikanya.
Tefra
Tefra terbentuk ketika magma yang meletus akibat gas panas yang mengembang dalam waktu yang cepat. Ledakan kuat ini menghasilkan partikel material yang beterbangan dari gunung berapi. Partikel padat dengan diameter kurang dari 2 mm disebut sebagai abu vulkanik.
Dampak terhadap manusia
Erupsi gunung berapi memberikan bahaya besar bagi peradaban manusia. Meskipun demikian, aktivitas vulkanik juga memberikan manfaat.
Dampak buruk
Terdapat beberapa peristiwa yang merupakan akibat dari erupsi gunung berapi, seperti aliran piroklastik, lahar, dan emisi karbon dioksida. Aktivitas vulkanik juga menyebabkan beberapa peristiwa lain seperti gempa bumi, fumarol, kolam lumpur, dan geiser. Beberapa peristiwa tersebut sering kali memberikan dampak buruk secara langsung bagi aktivitas manusia.
Gas vulkanik dapat mencapai lapisan stratosfer sehingga dapat membentuk aerosol asam sulfat yang mampu menghamburkan radiasi dari Matahari dan menurunkan temperatur di permukaan Bumi. Hal seperti ini kemungkinan pernah terjadi pada Gunung Huaynaputina sekitar tahun 1600, ketika gas vulkanik di atmosfer menyebabkan terjadinya bencana kelaparan Rusia antara tahun 1601-1603. Reaksi kimia yang terjadi pada aerosol sulfat di stratosfer juga dapat merusak lapisan ozon. Zat asam seperti hidrogen klorida (HCl) dan hidrogen fluorida (HF) dapat jatuh ke permukaan Bumi sebagai hujan asam. Erupsi eksplosif gunung berapi juga dapat melepaskan gas rumah kaca seperti karbon dioksida.
Abu vulkanik yang dilontarkan ke udara dapat membahayakan pesawat, terutama pesawat jet. Partikel yang masuk ke dalam mesin jet dapat meleleh akibat temperatur tinggi dan turbin mesin. Selain itu, abu vulkanik dengan kecepatan tinggi dapat merusak bagian luar pesawat, instrumen navigasi, dan sistem komunikasi. Gangguan-gangguan seperti dapat menyebabkan terganggunya penerbangan akibat penundaan dan pengalihan rute penerbangan.
Musim dingin vulkanik diduga sempat terjadi 70.000 tahun yang lalu ketika terjadinya erupsi dahsyat Gunung Toba di Pulau Sumatra. Peristiwa ini mungkin telah menyebabkan terjadinya leher botol populasi yang memengaruhi genetika manusia zaman sekarang. Pada tahun 1815, erupsi Gunung Tambora menyebabkan anomali iklim global yang dikenal sebagai "Year Without a Summer". Erupsi besar gunung berapi juga kemungkinan telah menyebabkan setidaknya satu peristiwa kepunahan masal.
Dampak baik
Meskipun erupsi gunung berapi dianggap sebagai bencana yang membahayakan manusia, aktivitas vulkanik di masa lalu dapat mendukung perkembangan sumber daya di sekitarnya. Abu vulkanik yang dilepaskan oleh gunung berapi mengandung zat nutrisi yang dapat menyuburkan tanah. Aktivitas vulkanik juga disertai dengan aliran panas dari dalam Bumi yang dapat dimanfaatkan untuk pembangkit listrik tenaga panas bumi.
Sumber : Wikipedia
Geodesi dan Geomatika
Dipublikasikan oleh Merlin Reineta pada 18 Juli 2022
Vulkanologi merupakan bidang keilmuan yang mempelajari tentang tentang gunung berapi. Namanya diperoleh dari bahasa Inggris volcanology yang berarti ilmu gunung berapi. Kata vulkano merupakan kata serapan dari bahasa Belanda vulkaan atau dari bahasa Latin vulcano. Istilah vulkanologi berasal dari Bahasa Latin Vulcan, dewa api Romawi. Vulkanologi mempelajari semua fenomena dari aktivitas gunung berapi seperti lava dan magma, serta fenomena geologi yang berhubungan dengan gunung api. Seorang ahli vulkanologi adalah orang yang melakukan studi pada bidang ini.
Objek kajian
Gunung berapi
Gunung berapi adalah gunung yang mempunyai lubang berbentuk kepundan yang menjadi tempat keluarnya cairan magma, gas atau cairan lainnya ke permukaan bumi. Gunung berapi awalnya merupakan rekahan dalam kerak bumi. Gunung berapi yang menghasilkan erupsi ke permukaan bumi umumnya berbentuk kerucut terpancung. Bentuk-bentuk dan mekanisme kerja dari gunung api dipelajari dalam vulkanologi dan geosains. Bidang ilmu yang mendukungnya adalah geologi, geofisika, geokimia dan penginderaan jauh.
Erupsi
Erupsi adalah proses keluarnya isi dari perut bumi menuju ke permukaan bumi. Penyebabnya adalah letusan gunung berapi. Benda-benda yang dikeluarkan sebagian besar berupa pecahan batuan, gas dan abu. Erupsi gunung api termasuk dalam proses vulkanisme. Erupsi terjadi akibat adanya tenaga endogen yang disebabkan adanya tekanan gas yang kuat di dalam bumi. Tekanan ini mendorong magma naik secara perlahan-lahan. Magma menumpuk pada suhu 1.200oC akibat pelelehan batuan. Lapisan batuan yang padat menambah tekanan magma sehingga magma keluar dari lapisan batuan yang lebih mudah meleleh. Erupsi ini terjadi dalam bentuk ledakan dan semburan yang sangat kuat.
Pengkaji
Para ahli vulkanologi sering mengunjungi gunung berapi, terutama yang masih aktif, untuk mengamati letusan gunung berapi, mengumpulkan produk letusan termasuk seperti abu, atau batu apung, batuan, dan lava. Tujuan utama dari penyelidikan adalah perkiraan letusan; pada saat ini belum ada cara yang akurat untuk melakukan hal ini, tetapi memperkirakan letusan, seperti halnya memperkirakan gempa bumi, dapat menyelamatkan banyak jiwa. Seorang ahli vulkanologi mempelajari pembentukan gunung berapi dan letusannya saat ini serta sejarah letusannya.
Pemanfaatan ilmu
Para vulkanolog memanfatkan vulkanologi sebagai mitigasi bencana gunung api. Caranya adalah dengan selalu menghitung atau memperkirakan kapan gunung api akan meletus. Bagian dalam gunung api dibor untuk memodelkan bentuk gunung api dan menggambarkan peta isi gunung api. Metode geofisika dipakai untuk membuat peta agar dapat memprediksi bagaimana cara gunung api akan meletus. Vulkanolog juga memanfaatkan satelit untuk mempelajari gunung api dari luar angkasa dengan tujuan yang sama.
Sumber Artikel : Wikipedia