fotovoltaik

Fotovoltaik

Dipublikasikan oleh Siti Nur Rahmawati pada 22 Agustus 2022


Fotovoltaik adalah teknologi pengubahan energi dari sinar matahari menjadi energi listrik secara langsung. Peralatan fotovoltaik berbentuk kumpulan sel surya yang disusun secara seri atau paralel dan disatukan menjadi modul surya. Aplikasi fotovoltaik diwujudkan menggunakan panel surya untuk energi dengan mengubah sinar matahari menjadi listrik. Karena permintaan yang terus meningkat terhadap sumber energi bersih, pembuatan panel surya dan kumpulan fotovoltaik telah meluas secara dramatis dalam beberapa tahun belakangan ini.

Pohon fotovoltaik di StyriaAustria

Fotovoltaik diinstal

Produksi fotovoltaik telah berlipat setiap dua tahun, meningkat rata-rata 48 persen tiap tahun sejak 2002, menjadikannya teknologi energi dengan pertumbuhan tercepat di dunia. Pada akhir 2007, menurut data awal, produksi global mencapai 12.400 megawatt. Secara kasar, 90% dari kapasitas generator ini meliputi sistem listrik terikat. Pemasangan seperti ini dilakukan di atas tanah (dan kadang-kadang digabungkan dengan pertanian dan penggarapan) atau dibangun di atap atau dinding bangunan, dikenal sebagai Building Integrated Photovoltaic atau BIPV.

Pengukuran satuan dan insentif keuangan, seperti feed-in tariff untuk listrik tenaga surya, telah membantu instalasi PV surya di banyak negara termasuk Australia, Jerman, Israel,[8] Jepang, dan Amerika Serikat. Sedangkan di Peru, dua juta rakyat miskin akan menerima energi listrik gratis dari 1600 panel surya yang akan dipasang hingga tahun 2016.

Sejarah penemuan

Pengamatan yang pertama kali berkaitan dengan efek fotovoltaik diadakan pada tahun 1839 oleh Henri Becquerel. Salah satu sel pada elektrode yang ada di sel elektrolitik diberikannya sinar matahari. Pada tahun 1877, Adams dan Day mengamati efek tersebut pada selenium. Beberapa perangkat pengukuran paparan fotografi telah dikembangkan pada paruh pertama abad ke-20 Masehi oleh tiga orang ilmuwan yaitu Lange (1930), Schottky (1930) dan Grondhal (1933). Tiga ilmuwan dari Bell Telephone Laboratory berhasil membuat sel surya dari bahan silikon kristalin yang pertama di dunia pada tahun 1954. Ketiga ilmuwan ini ialah Chaplin, Fuller dan Pearson. Efisiensi energi dari sel surya ini adalah 6%. Pada tahun yang sama, Reynold dan rekan kerjanya juga berhasil membuat sel surya dengan efisiensi energi yang sama dari bahan Kadmium sulfida.

Selama periode tahun 1950-an, sel surya berbahan silikon kristalin hanya digunakan untuk penelitian dan pengembangan teknologi luar angkasa. Tujuan awalnya untuk memperoleh satelit yang memiliki kebutuhan daya cahaya yang memadai. Pada awal tahun 1958, satelit bertenaga surya yang pertama berhasil diluncurkan. Satelit ini diberi nama Satelit American Vanguard I. Setelah peluncuran tersebut, pengembangan terus dilakukan terhadap energi surya hingga meliputi bidang militer, komunikasi, meteorologi dan penelitian ilmiah. Efisiensi energi yang diperoleh telah mencapai 20%. Produksi sel surya berbahan silikon kristalin telah mencapai harga yang mahal, yaitu $10 Juta per kiloWatt pada tahun 1975.

Perlengkapan

Panel surya

Panel surya merupakan peralatan yang terdiri dari kumpulan sel surya yang bahan dasarnya adalah semikonduktor. Alat ini digunakan untuk mengubah energi surya menjadi energi listrik. Panel surya bekerja dengan mempertemukan semikonduktor jenis P dan semikonduktor jenis N. Susunan modul suryayang ada pada panel surya dapat dirangkai secara seri maupun paralel. Pemilihan jenis rangkaian disesuaikan dengan kebutuhan daya listrik yang akan digunakan. Panel surya hanya menghasilkan arus listrik berjenis arus searah, sehingga pencatu daya bagi pemakai energi listrik harus diubah terlebih dahulu menjadi arus bolak-balik dengan menggunakan konverter.

Kebijakan mengenai standar teknis dari pemanfaatan energi surya menjadi penentu bagi pemasangan panel surya pada suatu bangunan komersial atau pada bangunan perusahaan. Optimalisasi sistem tenaga listrik dengan energi dasar berupa energi surya selalu mengutamakan penyediaan ruang bagi panel surya sebagai salah satu pertimbangan yang penting. Penerapan langsung dari kegiatan transformasi energi surya yang dilakukan oleh panel surya adalah pada pembangkit listrik tenaga surya. Usia pakai rata-rata dari sebuah panel surya rata-rata adalah 30 tahun. Setelah jangka waktu tersebut, panel surya rentan mengalami kerusakan.

Manfaat

Fotovoltaik yang digunakan pada Solar sell juga memiliki kelebihan menjadi sumber energi yang praktis mengingat tidak membutuhkan transmisi karena dapat dipasang secara modular di setiap lokasi yang membutuhkan. Fotovoltaik yang digunakan pada solar cell memiliki kemudahan, hampir disetiap tempat di Indonesia solar cell mampu dan cocok dalam pemasangannya dibandingkan dengan teknologi terbarukan seperti turbin angin (pembangkit listrik tenaga angin) yang hanya cocok pada tempat tertentu.Hingga saat ini total energi listrik yang dibangkitkan dengan solar cell di seluruh dunia baru mencapai sekitar 12 Giga Watt (bandingkan dengan total penggunaan listrik dunia sebesar 10 Tera Watt).

Fotovoltaik mampu menjadi Energi terbarukan dengan memanfaatkan tenaga surya (matahari) dimana sinar matahari mampu dikonversi menjadi energi listrik. Pembangkit listrik yang mengubah energi surya menjadi energi listrik. Pembangkitan listrik bisa dilakukan dengan dua cara, yaitu secara langsung menggunakan fotovoltaik dan secara tidak langsung dengan pemusatan energi surya. Fotovoltaik mengubah secara langsung energi cahaya menjadi listrik menggunakan efek fotoelektrik. Pemusatan energi surya menggunakan sistem lensa atau cermin dikombinasikan dengan sistem pelacak untuk memfokuskan energi matahari ke satu titik untuk menggerakan mesin kalor. Kelebihan dari pemanfaatan Fotovoltaik yaitu Mampu mengurangi biaya tagihan listrik bulanan dan menjadi nilai tambah bagi suatu negara dan jugaTeknologi Fotovoltaik ini ramah lingkungan karena hanya memanfaatkan sinar matahari menjadi energi listrik dibandingkan energi konvesional (batu bara).

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Fotovoltaik

fotovoltaik

Panel Surya

Dipublikasikan oleh Siti Nur Rahmawati pada 22 Agustus 2022


Panel surya adalah sebuah alat yang terdiri dari sel surya yang terbuat dari bahan semikonduktor untuk mengubah energi surya menjadi energi listrik. Prinsip kerjanya didasari oleh pertemuan semikonduktor jenis P dan semikonduktor jenis N. Panel surya tersusun dari modul surya yang dirangkai secara seri maupun paralel sesuai dengan kebutuhan daya listrik tertentu. Pemasangan panel surya pada suatu bangunan komersial atau pada bangunan perusahaan ditentukan oleh kebijakan mengenai penggunaan instalasi listrik yang memanfaatkan energi surya. Panel surya hanya menghasilkan arus listrik berjenis arus searah. Pemenuhan pencatu daya bagi pemakai energi listrik memerlukan konverter dari arus searah menjadi arus bolak-balik. Penyediaan ruang bagi panel surya merupakan salah satu pertimbangan penting bagi optimalisasi sistem tenaga listrik dengan energi dasar berupa energi surya. Pembangkit listrik tenaga surya merupakan penerapan langsung dari kegiatan transformasi energi surya yang dilakukan oleh panel surya. Panel surya rata-rata memiliki usia pakai selama 30 tahun sebelum mengalami kerusakan.

Bahan modul

Modul panel surya umumnya tersusun dari bahan silikon. Kandungan sel silikon mempunyai struktur atom yang tunggal, ganda atau tidak berbentuk. Struktur atom yang tunggal disebut monokristalin, sedangkan yang ganda disebut polikristalin. Sementara itu, silikon yang tidak berbentuk disebut amarfous dan hanya ada pada silikon dengan lapisan yang tipis. Selain silikon, beberapa jenis modul panel surya terbuat dari bahan berupa kadmium telurida atau tembaga indium galium selenida. Sementara itu, beberapa jenis modul panel surya menggabungkan ketiga jenis bahan tersebut. Pembuatan panel surya menggunakan laser diode yang dipompa untuk penulisan interkoneksi rangkaian listrik dan pola isolasi. Panjang gelombang yang diperlukan untuk penulisan yaitu 1.064 nanometer.

Cara kerja

Panel surya mulai bekerja berdasarkan prinsip gaya gerak listrik yang terjadi pada sel surya. Gaya gerak listrik ini diawali ketika foton dari sinar matahari mengalami tumbukan dengan panel surya. Tumbukan ini membuat foton diserap oleh material semikonduktor yang terdapat pada panel surya. Material ini salah satunya ialah silikon. Tumbukan membuat elektron yang merupakan muatan listrik negatif mengalami pelepasan dari atom. Elektron yang terlepas ini kemudian mengalir melalui material semikonduktor sehingga terbentuklah arus listrik. Di sisi lain, muatan listrik positif yang disebut sebagai "lubang" mengalir dengan arah yang berlawanan dengan muatan listrik negatif. Sumber listrik dengan jenis arus searah dapat dihasilkan melalui penggabungan beberapa panel surya. Panel-panel surya ini memperoleh sumber energi dari energi surya.

Kinerja

Iradiasi

Salah satu faktor yang menentukan kinerja dari panel surya ialah kondisi iradiasi dari sinar matahari. Kinerja panel surya ini diamati secara kelistrikan melalui dua jenis besaran listrik, yaitu arus listrik dan tegangan listrik. Modul surya akan menghasilkan arus listrik dengan jumlah yang cenderung menurun secara proporsional ketika iradiasi mengalami penurunan. Kondisi ini menghasilkan tegangan listrik dengan variasi yang sangat kecil. Modul surya tidak mengalami pengaruh yang berarti dari iradiasi selama nilai iradiasi masih dalam batasan yang normal. Tingkat transformasi energi dari modul surya akan mempunyai nilai yang sama pada kondisi tersebut. Faktor lain yang mempengaruhi kinerja dari panel surya ialah suhu modul surya. Nilai suhu modul surya berbanding terbalik dengan nilai tegangan listrik yang dihasilkan oleh modul surya. Sementara itu, nilai arus listrik yang dihasilkan tetap sama. Pada kondisi ini, penurunan nilai tegangan listrik pada modul surya berarti penurunan nilai daya listrik yang dihasilkan oleh panel surya.

Disain

Kinerja dari panel surya juga dapat ditinjau dari desainnya. Lapisan permukaan panel surya harus dibuat lebih tebal dibandingkan dengan nilai optimumnya. Tujuannnya untuk mengurangi resistensi yang melintang. Keberadaan resistensi melintang ini dapat mengurangi nilai efisiensi energi pada kumpulan sel surya.

Suhu radiasi

Panel surya memerlukan kondisi dan persyaratan suhu radiasi tertentu agar dapat mempertahankan kegiatan produksinya. Kisaran suhu yang memungkinkan adalah antara 32–68o Fahrenheit. Nilai ini tidak tercapai pada kondisi Matahari dalam keadaan sejajar dengan vektornya pada sumbu rotasi. Pada kondisi ini, suhu radiasi sangat panas dan dapat mencapai nilai 176o Fahrenheit. Pada permukaan Bumi yang memiliki ketinggian yang lebih rendah, suhunya akan lebih meningkat akibat radiasi elektromagnetik dari Bumi.

Pengendalian

Pengendalian arus searah

Pengisian arus searah dari panel surya menuju ke baterai listrik menggunakan peralatan yang bernama pengendali pengisian. Peralatan ini digunakan pada sistem pembangkit listrik tenaga surya. Kelengkapan yang dimilikinya berupa perangkat penyimpanan energi listrik. Pengendali pengisian juga mampu melakukan pengaliran arus listrik dari baterai listrik menuju ke beban listrik. Selain itu, terdapat pula peralatan bernama pemutus tegangan tinggi. Alat ini digunakan untuk memutuskan arus liistrik dari modul surya pada panel surya ketika baterai telah terisi penuh.

Pengendalian posisi

Pengendalian posisi panel surya dapat menggunakan dua jenis sistem, yaitu sistem pelacakan poros tunggal dan sistem pelacakan poros ganda. Sistem pelacakan poros tunggal menghasilkan posisi panel surya yang hanya mengarah kepada satu sudut kemiringan saja. Sedangkan sistem pelacakan poros ganda mampu mengubah posisi panel surya pada dua jenis sudut kemiringan. Pelacakan sinar matahari bagi panel surya menjadi lebih akurat pada sistem pelacakan poros ganda. Kedua jenis sistem ini dapat menghasilkan peningkatan produksi daya listrik dengan nilai maksimal tertentu sesuai dengan kondisi iradiasi dari sinar matahari. Sistem pelacakan poros tunggal menghasilkan peningkatan produksi daya listrik dengan nilai maksimal sebesar 27%, sedangkan sistem pelacakan poros ganda dapat menghasilkan peningkatan produksi daya listrik dengan nilai maksimal sebesar 37% tiap tahunnya.

Pemasangan

Negara empat musim

Panel surya secara umum dipasang secara tetap dan diam pada dudukannya. Negara-negara di belahan Bumi utara memposisikan panel surya menghadap ke selatan. Sedangkan negara-negara di belahan Bumi selatan memposisikan panel surya menghadap ke utara. Pemosisian ini diterapkan oleh negara-negara yang mengalami empat jenis musim. Posisi panel terhadap arah penyinaran matahari ialah tegak lurus selama siang hari.

Negara tropis

Pemasangan panel surya pada negara di daerah tropis atau negara yang terletak di sekitar garis khatulistiwa cenderung lebih datar dibandingkan dengan pemasangan panel surya pada negara dengan empat musim. Jumlah energi listrik yang dihasilkan menjadi lebih sedikit. Penyebabnya ialah posisi penyinaran pada pagi dan sore hari kurang sempurna dan tidak menyerap seluruh sinar matahari yang terpancarkan.

Pengembangan

Pengembangan penggunaan panel surya tidak hanya pada negara-negara yang selalu disinari oleh sinar matahari. Tiga negara telah memulai penggunaan energi surya telah memulai penggunaan energi surya sejak tahun 2005. Masing-masing ialah Jerman, Jepang dan Amerika Serikat. Ketiga negara ini menyumbang sebanyak 90% dari 3.075 MegaWatt hasil produksi menggunakan teknologi fotovoltaik. Pada Desember 2007, jumlahnya meningkat menjadi 4.500 MegaWatt. Negara-negara lain di Eropa dan Asia mulai mempertimbangkan penggunaan energi surya seiring peningkatan harga minyak dunia dan harga beli energi listrik dengan nilai yang dua kali lipat lebih mahal dibandingkan yang dijual oleh Amerika Serikat. Agen Energi Internasional mencatat bahwa Amerika Serikat telah memanfaatkan energi surya untuk diubah menjadi energi listrik secara mantap sejak tahun 2006. Sementara itu, Jepang dan Jerman memulai investasi atas energi terbarukan sejak tahun 1990-an. Jerman juga mengadakan kegiatan penelitian dan pengembangan terhadap energi surya dengan mempekerjakan sedikitnya 200.000 rekayasawan dan ilmuwan. Pekerjaan ini kemudian menjadi sektor pekerjaan terbesar kedua di Jerman setelah sektor otomotif.

Di sisi lain, timbul permasalahan kualitas pemasangan panel surya di seluruh dunia. Sekitar 30% dari seluruh proyek pemasangan panel surya di dunia mengalami kegagalan yang berakibat pada kerusakan panel surya. Negara dengan pemasangan panel surya yang relatif baru, kerusakan panel surya berada dalam kondisi yang serius. Dua negara yang mengalami kasus ini diantaranya ialah India dan Indonesia. Permasalahan yang timbul antara lain kebakaran, penurunan keandalan sistem tenaga listrik, keselamatan dan kehilangan daya listrik. Penyebab permasalahan ini ialah tidak dipertimbangkannya persoalan keamanan dan keselamatan di dalam skema pembiayaan.

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Panel Surya

fotovoltaik

Modul Surya

Dipublikasikan oleh Siti Nur Rahmawati pada 22 Agustus 2022


Modul surya adalah kumpulan sel surya yang disusun menjadi satu rangkaian listrik. Susunan sel surya di dalam modul surya dapat berbentuk rangkaian seri maupun rangkaian paralel. Modul surya merupakan bagian dari teknologi fotovoltaik. Tujuan pembuatan modul surya ialah untuk memperoleh daya listrik dan tegangan listrik dengan nilai tertentu. Modul surya umumnya bekerja pada nilai tegangan listrik yaitu 12 Volt atau 24 Volt. Pada tiap panel surya, daya listrik yang dihasilkan oleh modul surya berkisar antara 10–300 Watt.

Cara kerja

Modul surya terbuat dari bahan semikonduktor. Jenis bahan yang umum digunakan dalam pembuatannya ialah silikon, galium arsenida, dan kadmium telurida. Semua jenis bahan ini memiliki kemampuan untuk mengubah sinar matahari menjadi listrik secara langsung. Sel surya di dalam modul surya akan menyerap sinar matahari sehingga terbentuk kondisi elekktron bebas dan lubang-lubang yang terhubung dalam kondisi positif dan negatif. Ketika beban listrik dengan jenis arus searah dihubungkan ke panel surya, maka pengaliran arus listrik akan terjadi.

Proses produksi modul surya dilakukan di industri tenaga surya dengan menggunakan teknologi canggih yang menyediakan rantai pasok berkelanjutan. Jenis teknologi yang digunakan meliputi ponsel cerdas, Internet untuk Segala, dan teknik otomasi. Penggunaan teknologi tersebut memberikan penambahan nilai pada produk dan pengurangan limbah hasi manufaktur.

Konstruksi

Satu modul surya umumnya memiliki sebanyak 28–32 sel surya. Susunan sel surya ini membentuk rangkaian seri. Tegangan listrik yang dihasilkan merupakan tegangan listrik dengan jenis arus searah. Nilai tegangan listrik yang menjadi standar pada satu modul surya adalah 12 Volt pada kondisi penyinaran standar. Kondisi standar ini ditentukan oleh nilai massa udara, yaitu 1,5. Pada pembangkit listrik tenaga surya, modul surya disusun menjadi rangkaian gabungan antara seri dan paralel. Pembuatan rangkaian gabungan ini bertujuan untuk mengatur daya listrik dan tegangan listrik yang dihasilkan oleh modul surya, sehingga sesuai dengan kebutuhan pencatu daya dan tegangan kerja pada beban listrik.

Nilai arus listrik yang sesuai dengan kebutuhan beban listrik dapat diatur melalui hubungan rangkaian paralel. Masing-masing kutub yang memiliki sifat yang sama dihubungkan satu sama lain, sehingga arus listrik yang lebih besar dapat diperoleh. Sedangkan nilai tegangan listrik yang sesuai dengan kebutuhan dapat diperoleh melalui hubungan rangkaian seri. Kutub positif dan kutub negatif dihubungkan pada beban listrik. Kondisi ini menghasilkan nilai arus listrik yang sama pada tiap beban listrik, tetapi nilai tegangan listrik terbagi di antara beban-beban listrik yang terpasang. Sementara itu, sistem pembangkit listrik tenaga surya umumnya menggunakan rangkaian seri-paralel sehingga nilai tegangan listrik dan nilai arus listrik dapat ditetapkan secara bersama-sama.

Kinerja

Modul surya memiliki kinerja yang dapat digambarkan melalui kurva arus listrik terhadap tegangan listrik. Nilai arus listrik maksimum diperoleh ketika hambatan listrik ditiadakan dan rangkaian listrik dalam kondisi hubung singkat. Pada kondisi ini, kutub negatif dan kutub positif saling bertemu secara langsung sehingga arus listrik merupakan arus hubung singkat. Nilai tegangan listrik pada kondisi ini sama dengan nol. Sedangkan nilai tegangan maksimum diperoleh ketika rangkaian listrik dalam keadaan terbuka. Pada kondisi ini, nilai hambatan listrik sangat besar sehingga arus listrik tidak dapat mengalir sama sekali. Kondisi ini menghasilkan tegangan listrik terbuka dengan nilai arus listrik sama dengan nol.

Arus listrik pada modul surya dinyatakan dalam satuan Ampere, sedangkan tegangan listrik dinyatakan dalam satuan Volt. Pengalian nilai dari kedua satuan ini kemudian menghasilkan nilai daya listrik dari daya listrik pada modul surya. Satuan daya listrik yang digunakan ialah Watt. Daya listrik yang dihasilkan pada kondisi arus hubung singkat sama dengan nol, karena nilai tegangan listrik juga sama dengan nol. Pada kondisi yang sama, kondisi tegangan listrik terbuka juga menghasilkan daya listrik yang sama dengan nol karena nilai arus listrik sama dengan nol.

Pembuatan gambar kurva arus listrik terhadap tegangan listrik pada modul surya ditentukan oleh kondisi intensitas cahaya dan suhu modul surya. Kedua faktor ini menjadi penentu bagi daya listrik yang dihasilkan oleh modul surya. Semakin besar intensitas cahaya yang mengenai modul surya, maka daya listrik yang dihasilkan semakin besar pula. Kondisi ini merupakan hasil dari perbandingan lurus antara intensitas cahaya dengan arus listrik. Sebaliknya, suhu modul surya memiliki perbandingan yang terbalik dengan tegangan listrik. Peningkatan suhu pada modul surya berarti pengurangan nilai tegangan listrik sekaligus pengurangan nilai daya listrik yang dihasilkan oleh modul surya. Kurva arus listrik terhadap tegangan listrik ppada modul surya menggunaka standar intensitas cahaya sebesar 1000 W/m2 dengan suhu standar yaitu 25 oCelsius.

Efisiensi

Tingkat efisiensi dari transformasi energi oleh modul surya ditentukan oleh tegangan listrik pada rangkaian listrik terbuka dan arus listrik pada kondisi hubung singkat. Selain itu, efisiensi juga ditentukan oleh jumlah arus listrik yang mengalir pada rangkaian listrik, dan bentuk modul surya. Pada umumnya, tingkat efisiensi energi dari modul surya memiliki nilai yang lebih kecil dibandingkan dengan sel surya. Perbedaan nilai efisiensinya berkisar antara 2–3%.

Indikasi umum pada modul surya ialah memiliki sel surya yang masing-masing dapat menghasilkan tegangan listrik sebesar 0,5 Volt. Sel-sel tersebut terpasang pada modul surya dan modul surya terpasang pada panel surya. Efisiensi energi listrik yang dihasilkan hanya sekitar 15%. Rata-rata daya listrik yang dihasilkan oleh sel surya berukuran 1 m2 hanya sebesar 75 Watt dengan keseluruhan jumlah energi surya sebanyak 500 W/m2.

Kegunaan

Modul surya digunakan untuk menghasilkan energi listrik dengan memanfaatkan teknologi fotovoltaik. Bahan dasar yang digunakan untuk membuat modul surya ialah semikonduktor. Komponen semikonduktor ini memiliki kemampuan untuk mengubah energi surya menjadi energi listrik. Proses transformasi energi dari energi surya menjadi energi listrik diawali oleh tumbukan energi surya di dalam modul surya. Tumbukan ini kemudian menyebabkan terjadinya pelepasan elektron. Jumlah energi kinetik yang mendukung pelepasan elektron ditentukan oleh intensitas cahaya. Peningkatan energi kinetik terjadi pada siang hari.

Jenis sistem

Sistem berdiri sendiri

Sistem berdiri sendiri dibuat dari susunan modul surya tunggal atau beberapa modul surya yang membentuk panel surya untuk memperoleh daya listrik sesuai dengan kebutuhan. Tegangan listrik yang bekerja pada tiap modul surya sebesar 12 Volt. Daya listrik yang dihasilkan berkisar antara 50–100 Watt. Sistem berdiri sendiri umumnya digunakan untuk mengisi baterai listrik pada siang hari. Pada malam hari, baterai tersebut baru digunakan untuk menggantikan ketidaktersediaan energi surya. Sistem berdiri sendiri juga dapat dihubungkan dengan perangkat lain sehingga membentuk sistem hibrid. Perangkat yang dihubungkan dapat berupa generator listrik yang menggunakan bahan bakar minyak atau tenaga angin dan baterai. Penerapan sistem berdiri sendiri ini pada daerah terpencil yang tidak memiliki sumber daya listrik untuk pencahayaan listrik dan operasi peralatan listrik.

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Modul Surya
page 1 of 1