Kimia

Silikon

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 18 Februari 2025


Garis spektrum silikon

Silikon adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Si dan nomor atom 14. Senyawa yang dibentuk bersifat paramagnetik. Unsur kimia yang juga disebut sebagai zat pasir ini ditemukan oleh Jöns Jakob Berzelius. Silikon merupakan unsur metaloid tetravalensi, bersifat lebih tidak reaktif daripada karbon (unsur nonlogam yang tepat berada di atasnya pada tabel periodik, tetapi lebih reaktif daripada germanium, metaloid yang berada persis di bawahnya pada tabel periodik. Kontroversi mengenai sifat-sifat silikon bermula sejak penemuannya: silikon pertama kali dibuat dalam bentuk murninya pada tahun 1824 dengan nama silisium (dari kata bahasa Latin: silicis), dengan akhiran -ium yang berarti logam. Meski begitu, pada tahun 1831, namanya diganti menjadi silikon karena sifat-sifat fisiknya lebih mirip dengan karbon dan boron.

Silikon merupakan elemen terbanyak kedelapan di alam semesta dari segi massanya, tetapi sangat jarang ditemukan dalam bentuk murni di alam. Silikon paling banyak terdistribusi pada debu, pasir, planetoid, dan planet dalam berbagai bentuk seperti silikon dioksida atau silikat. Lebih dari 90% kerak bumi terdiri dari mineral silikat, menjadikan silikon sebagai unsur kedua paling melimpah di kerak bumi (sekitar 28% massa) setelah oksigen.

Silikon sering digunakan untuk membuat serat optik dan dalam operasi plastik digunakan untuk mengisi bagian tubuh pasien dalam bentuk silikone.

Silikon dalam bentuk mineral dikenal pula sebagai zat kersik.

Sebagian besar silikon digunakan secara komersial tanpa dipisahkan, terkadang dengan sedikit pemrosesan dari senyawanya di alam. Contohnya adalah pemakaian langsung batuan, pasir silika, dan tanah liat dalam pembangunan gedung. Silika juga terdapat pada keramik. Banyak senyawa silikon modern seperti silikon karbida yang dipakai dalam pembuatan keramik berdaya tahan tinggi. Silikon juga dipakai sebagai monomer dalam pembuatan polimer sintetik silikone.

Unsur silikon juga berperan besar terhadap ekonomi modern. Meski banyak silikon digunakan pada proses penyulingan baja, pengecoran aluminium, dan beberapa proses industri kimia lainnya, sebagian silikon juga digunakan sebagai bahan semikonduktor pada elektronik-elektronik. Karena penggunaannya yang besar pada sirkuit terintegrasi, dasar dari komputer, maka kelangsungan teknologi modern bergantung pada silikon.

Silikon juga merupakan elemen esensial pada biologi, meskipun hanya dibutuhkan hewan dalam jumlah amat kecil. Beberapa jenis makhluk hidup yang membutuhkannya antara lain jenis porifera dan mikroorganisme jenis diatom. Silikon digunakan untuk membuat struktur tubuh mereka.

Karakteristik

Fisik

Silikon mengkristal pada struktur kristal kubus berlian

Silikon berbentuk padat pada suhu ruangan, dengan titik lebur dan titik didih masing-masing 1.400 dan 2.800 derajat celsius. Yang menarik, silikon mempunyai massa jenis yang lebih besar ketika dalam bentuk cair dibanding dalam bentuk padatannya. Tapi seperti kebanyakan substansi lainnya, silikon tidak akan bercampur ketika dalam fase padatnya, tetapi hanya meluas, sama seperti es yang memiliki massa jenis lebih kecil daripada air. Karena mempunyai konduktivitas thermal yang tinggi (149 W·m−1·K−1), silikon bersifat mengalirkan panas sehingga tidak pernah dipakai untuk menginsulasi benda panas.

Dalam bentuk kristalnya, silikon murni berwarna abu-abu metalik. Seperti germanium, silikon agak kuat tetapi sangat rapuh dan mudah mengelupas. Seperti karbon dan germanium, silikon mengkristal dalam struktur kristal kubus berlian, dengan jarak kisi 0,5430710 nm (5.430710 Å).

Orbital elektron terluar dari silikon mempunyai 4 elektron valensi. Kulit atom 1s,2s,2p, dan 3s terisi penuh, sedangkan kulit atom 3p hanya terisi 2 dari jumlah maksimumnya 6.

Silikon bersifat semikonduktor.

Kimia

Bubuk Silikon

Silikon merupakan metaloid, siap untuk memberikan atau berbagi 4 atom terluarnya, sehingga memungkinkan banyak ikatan kimia. Meski silikon bersifat relatif inert seperti karbon, silikon masih dapat bereaksi dengan halogen dan alkali encer. Kebanyakan asam (kecuali asam nitrat dan asam hidrofluorat) tidak bereaksi dengan silikon. Silikon dengan 4 elektron valensinya mempunyai kemungkinan untuk bergabung dengan elemen atau senyawa kimia lainnya pada kondisi yang sesuai.

Isotop

Silikon yang eksis di alam terdiri dari 3 isotop yang stabil, yaitu silikon-28, silikon-29, dan silikon-30, dengan silikon-28 yang paling melimpah (92% kelimpahan alami). Out of these, only silicon-29 is of use in NMR and EPR spectroscopy. Dua puluh radioisotop telah diketahui, dengan silikon-32 sebagai yang paling stabil dengan paruh waktu 170 tahun dan silikon-31 dengan waktu paruh 157,3 menit. Sisa isotop radioaktif lainnya mempunyai paruh waktu kurang dari 7 detik dan kebanyakan malah kurang dari 0,1 detik.[14] Silikon tidak mempunyai isomer nuklir.

Isotop dari silikon mempunyai nomor massa berkisar antara 22 sampai 44. Bentuk peluruhan paling umum dari 6 isotop yang nomor massanya dibawah isotop paling stabil (silikon-28) adalah β+, utamanya membentuk isotop aluminium (13 proton) sebagai produk peluruhannya. Untuk 16 isotop yang nomor massanya diatas 28, bentuk peluruhan paling umumnya adalah β−, utamanya membentuk isotop fosfor (15 proton) sebagai produk peluruhan.

Keberadaan

Gugusan kristal kuarsa dari Tibet. Mineral alami ini mempunyai rumus kimia SiO2.

Jika diukur berdasarkan massanya, silikon membentuk 27,7% massa kerak bumi dan merupakan unsur kedua yang paling melimpah di kerak bumi setelah oksigen. Silikon biasanya ditemukan dalam bentuk mineral silikat yang kompleks, dan lebih jarang lagi dalam bentuk silikon dioksida (silika, komponen utama pada pasir). Kristal silikon murni amat sangat jarang ditemukan di alam.

Mineral silikat- berbagai macam mineral yang terdiri dari silikon, oksigen, dan berbagai logam reaktif—membentuk 90% massa kerak bumi. Hal ini dikarenakan suhu panas pada proses pembentukan sistem tata surya, silikon dan oksigen mempunyai afinitas yang besar satu sama lain, sehingga membentuk senyawa kimia. Karena oksigen dan silikon adalah unsur non-gas dan non-logam terbanyak pada puing supernova, mereka membentuk banyak silikat kompleks yang kemudian bergabung ke batuan planetesimal yang membentuk planet kebumian. Disini, mstriks mineral silikat yang tereduksi menangkap logam-logam yang reaktif untuk teroksidasi (aluminium, kalsium, natrium, kalium, dan magnesium). Setelah gas-gasnya lepas, campuran silikat ini kemudian membentuk sebagian besar kerak bumi. Karena silikat-silikat ini bermassa jenis rendah, baja, nikel, dan logam non-reaktif lainnya masuk ke dalam inti bumi, sehingga menyisakan magnesium dan silikat besi di lapisan atas.

Beberapa contoh mineral silikat yang ada di kerak bumi antara lain kelompok piroksena, amfibol, mika, dan feldspar. Mineral-mineral ini terdapat pada tanah liat dan beberapa jenis batuan seperti granit dan batu kapur.

Silika terdapat pada mineral-mineral yang terdiri dari silikon dioksida murni dengan bentuk kristal yang berbeda-beda: quartz, agate ametis, rock crystal, chalcedony, flint, jasper, dan opal. Kristal-kristal ini memiliki rumus empiris silikon dioksida, tetapi tidak terdiri dari molekul-molekul silikon dioksida. Silika secara struktur mirip dengan berlian, terdiri daripadatan kristal tiga dimensi yang terdiri dari silikon dan oksigen. Silika yang tidak murni membentuk kaca alam obsidian. Silika biogenik ada pada struktur diatom, radiolaria dan siliceous sponge.

Silikon juga merupakan komponen utama meteorit, dan merupakan komponen dari tektit, mineral silikat yang mungkin berasal dari bulan.

Produksi

Campuran

Campuran Ferrosilikon

Ferrosilikon, campuran silikon-besi yang terdiri dari unsur silikon dan besi dengan rasio yang berbagai macam, merupakan produk utama dari proses pengolahan unsur silikon, dengan persentase 80% dari seluruh produksi dunia. China merupakan negara pemasok silikon terbesar di dunia, dengan jumlah 4,6 juta ton (atau 2/3 produksi dunia), kebanyakan dalam bentuk ferrosilikon. Disusul kemudian oleh Rusia (610.000 ton), Norwegia (330.000 ton), Brasil (240.000 ton), dan Amerika Serikat (170.000 ton). Ferrosilikon paling banyak digunakan oleh industri baja.

Campuran aluminium-silikon paling banyak digunakan dalam industri pengecoran aluminium, dengan silikon sebagai bahan aditif tunggal utama untuk meningkatkan kekuatan cornya. Karena aluminium cor paling banyak digunakan pada industri otomotif, maka penggunaan silikon ini adalah penggunaan industri tunggal terbesar dari silikon murni "metallurgical grade".

Metallurgical grade

Silikon tidaklah dicampur dengan unsur-unsur lain dalam jumlah besar, biasanya lebih dari 95% disebut dengan logam silikon. Logam silikon ini jumlahnya 20% dari total produksi elemen silikon dunia, dengan kurang dari 1-2% dari total elemen silikon (5–10% dari silikon metallurgical grade) yang dimurnikan lagi untuk digunakan pada semikonduktor. Silikon metallurgical grade adalah silikon yang dibuat secara komersial dengan mereaksikan silika dengan kayu, arang, dan batu bara pada sebuah perapian listrik menggunakan elektrode karbon. Pada suhu lebih dari 1.900 °C (3.450 °F), karbon dari bahan-bahan tadi dan silikon akan mengalami reaksi kimia SiO2 + 2 C → Si + 2 CO. Silikon cair ada di bagian dasar tungku, yang kemudian dialirkan dan didingingkan. Silikon yang diproduksi melalui proses ini disebut silikon metallurgical grade dengan tingkat kemurnian paling kecil 98%. Dalam metode ini, silikon karbida (SiC) juga dapat terbentuk karena adanya karbon berlebih dengan reaksi kimia: SiO2 + C → SiO + CO atau SiO + 2 C → SiC + CO. Meski begitu, jika konsentrasi SiO2 tinggi, maka silikon karbida dapat dieliminasi dengan reaksi kimia 2 SiC + SiO2 → 3 Si + 2 CO.

Seperti yang telah dikatakan diatas, silikon, metallurgical grade digunakan pada umumnya di industri pengecoran aluminium untuk membentuk campuran aluminium-silikon. Sisanya, digunakan oleh industri kimia untuk membentuk bubuk silika.[19]

Sampai bulan September 2008, silikon metallurgical grade dihargai 1,45 US$ per pound ($3.20/kg),[20] naik dari $0,77 per pound ($1.70/kg) pada tahun 2005.

Kualitas elektronik

Ingot silikon monokristalin didapatkan dari proses Czochralski

Penggunaan silikon untuk peralatan semikonduktor membutuhkan kemurnian yang jauh lebih tinggi daripada silikon metallurgical grade. Silikon sangat murni (>99.9%) dapat diekstraksi daripadatan silika atau senyawa silika lainnya dengan elektrolisis molten salt.[22][23] Metode ini, yang sudah dikenal paling tidak dari tahun 1854 (lihat juga proses FFC Cambridge), punya potensi untuk memproduksi silikon solar-grade tanpa emisi karbon dioksida.

Silikon solar-grade tidak dapat digunakan untuk semikonduktor, karena tingkat kemurniannya harus sangat tinggi. Wafer silikon yang digunakan sebagai bahan baku integrated circuit harus dimurnikan sampai 99.9999999%, proses yang membutuhkan teknologi tinggi.

Sebagian besar kristal silikon yang digunakan untuk produksi alat elektronik didapatkan dari proses Czochralski (CZ-Si) karena metode ini merupakan metode termurah saat ini dan dapat menghasilkan kristal yang besar, meski masih mengandung pengotor.

Teknik pemurnian silikon generasi awal didasarkan pada fakta apabila silikon dicairkan dan dipadatkan kembali, maka material yang terakhir memadat kebanyakan merupakan pengotornya. Metode awal untuk memurnikan silikon, pertama kali tahun 1919, digunakan untuk memproduksi komponen radar selama Perang Dunia II, dibuat dengan menghancurkan silikon metallurgical grade dan melarutkan sebagian bubuk silikon pada asam. Ketika dihancurkan, pengotor-pengotor yang terdapat pada silikon terkumpul di lapisan paling luar, sehingga jika terkena asam akan larut kembali dan menghasilkan produk silikon yang lebih murni.

Batang Polikristalin silikon dibuat dengan proses Siemens

Pada suatu waktu, DuPont memproduksi silikon ultra-murni dengan mereaksikan silikon tetraklorida dengan seng pada 950 °C, dihasilkan silikon melalui SiCl4 + 2 Zn → Si + 2 ZnCl2. Meskipun begitu, teknik ini memiliki masalah lain, (misalnya produk samping berupa seng klorida yang dihasilkan yang menyumbat) sehingga akhirnya ditemukan proses Siemens. Pada proses Siemens, atang silikon dengan kemurnian tinggi direaksikan dengan triklorosilana pada 1150 °C. Gas triklorosilana terdekomposisi dan dan tambahan silikon tersimpan dan memperbesar karena 2 HSiCl3 → Si + 2 HCl + SiCl4. Silikon yang diproduksi dari proses ini disebut Silikon polikristalin. Silikon ini mempunyai tingkat pengotor kurang dari satu ppb (part per billion).

Tahun 2006 REC mengumumkan bahwa mereka membangun pabrik berbasis teknologi fluidized bed (FB) yang menggunakan silana: 3 SiCl4 + Si + 2 H2 → 4 HSiCl3, 4 HSiCl3 → 3 SiCl4 + SiH4, SiH4 → Si + 2 H2.[28] Keuntungan proses teknologi fluid bed adalah proses dapat berlangsung kontinu dengan hasil lebih banyak daripada proses Siemens yang merupakan proses batch.

Saat ini, silikon dimurnikan dengan mengubahnya menjadi senyawa silikon yang lebih mudah dimurnikan dengan distilasi daripada pada kondisi awalnya, dan lalu mengubah kembali senyawa silikon tersebut menjadi silikon murni. Triklorosilana adalah senyawa silikon yang umumnya digunakan sebagai intermediate, juga silikon tetraklorida dan silana.

Selain itu, ada juga proses Schumacher, yang menggunakan tribromosilana sebagai pengganti triklorosilana dan teknologi fluid bed. Meski begitu, sampai saat ini belum ada pabrikan besar yang memproduksi silikon dengan proses ini.

Senyawa

PDMS – sebuah senyawa silikon

  • Silikon membentuk senyawa biner yang disebut dengan silisida dengan banyak elemen logam yang nantinya menghasilkan senyawa dengan sifat yang beragam, misalnya magnesium silisida, Mg2Si yang sangat reaktif sampai senyawa tahan panas seperti molibdenum disilisida, MoSi2.
  • Silikon karbida, SiC (karborundum) adalah padatan keras, tahan panas.
  • Silana, SiH4, adalah gas firoforik dengan struktur tetrahedral mirip dengan metana, CH4. Senyawa murninya sendiri tidak bereaksi dengan air ataupun asam lemah, tetapi jika bereaksi dengan alkali maka langsung akan terjadi hidrolisis. Ada kelompok silikon hidrida terkatenasi yang membentuk senyawa yang homolog, SinH2n+2 dengan n berkisar 2–8. Semua senyawa ini mudah terhidrolisis dan tidak stabil, terutama pada senyawa suku tinggi.
  • Disilena, senyawa yang berisi ikatan rangkap dua silikon-silikon (mirip alkena) dan secara umum sangat reaktif, memerlukan gugus subtituen yang besar untuk menstabilkannya.[34] Disiluna, senyawa dengan silikon-silikon rangkap tiga pertama kali didapatkan tahun 2004, meski senyawanya berbentuk non-linear, ikatannya tidak sama dengan alkuna.
  • Tetrahalida, SiX4, adalah senyawa yang dapat dibentuk dengan semua halogen. Silikon tetraklorida, misalnya, dapat bereaksi dengan air, tak sama dengan homolognya, karbon tetraklorida. Silikon dihalida dapat dibentuk dengan reaksi dengan suhu tinggi antara silikon dan tetrahalida; dengan struktur yang serupa dengan karbena sehingga senyawa ini adalah senyawa reaktif. Silikon difluorida terkondensasi untuk membentuk senyawa polimer(SiF2)n.
  • Silikon dioksida adalah padatan tahan panas berbentuk kristal; mineral yang paling umum adalah quartz. Pada mineral quartz, setiap atom silikon dikelilingi oleh empat atom oksigen yang menjembatani atom silikon lainnya untuk membentuk kisi tiga dimensi. Silika dapat larut dalam air pada suhu tinggi untuk membentuk senyawa asam monosilikat, Si(OH)4.
  • Dengan kondisi yang sesuai, asam monosilikat dapat terpolimer untuk membentuk asam silikat yang lebih kompleks, muali dari senyawa kondensasi paling sederhana, asam disilikat (H6Si2O7) sampai struktur kompleks yang menjadi basis banyak mineral silikat yang disebut asam polisilikat {Six(OH)4–2x}n.

Aplikasi

Senyawa

Sebagian besar senyawa silikon digunakan di industri tanpa dipisahkan menjadi elemennya. Lebih dari 90% kerak bumi terdiri dari mineral silikat yang merupakan senyawa silikon dan oksigen. Banyak dari mineral ini digunakan langsung, seperti tanah liat, pasir silika, dan berbagai jenis batuan untuk bangunan. Silika juga menjadi bahan utama batu keramik. Silikat digunakan dalam pembuatan semen Portland yang digabung dengan pasir silika dan gravel untuk membentuk beton, basis hampir semua bangunan industri modern saat ini.

Logam paduan

Elemen silikon ditambahkan pada besi cor menjadi ferrosilikon atau silikokalsium untuk meningkatkan kemampuan pada bagian yang tipis dan menghindari pembentukan sementit ketika terkena udara luar. Produksi ferrosilikon pada industri baja adalah 80% dari total penggunaan silikon dunia.

Karakteristik silikon itu sendiri dapat digunakan untuk memodifikasi paduan logam. Campuran silikon pada alumnium cor membentuk campuran eutektik yang memadat dengan kontraksi termal sangat kecil. Silikon juga meningkatkan kekerasan aluminium.[18] Silikon merupakan komponen penting pada baja listrik karena mempengaruhi resistivitas dan feromagnetiknya.

Silikon metallurgical grade adalah silikon dengan kemurnian 95-99%. Sekitar 55% konsumsi silikon metallurgical grade dunia adalah untuk memproduksi logam paduan aluminium-silikon untuk pengecoran aluminium yang banyak digunakan untuk industri otomotif. Sisanya digunakan oleh industri kimia untuk pembuatan fumed silica, silana, dan silikone.

Elektronik

Wafer silikon

Karena hampir semua elemen silikon diproduksi sebagai paduan logam ferrosilikon, hanya sebagian kecil saja (20%) yang diproduksi menjadi silikon metallurgical grade (1,3–1,5 juta metrik ton/tahun). Logam silikon yang dimurnikan sampai kemurnian semikonduktor diperkirakan hanya 15% dari produksi silikon metallurgical grade. Meskipun begitu, nilai ekonomi dari silikon semikonduktor ini sangat tinggi.

Silikon monokristalin murni digunakan untuk memproduksi wafer silikon yang digunakan pada industri semikonduktor, elektronik, dan juga perangkat photovoltaic. Dalam konduksi muatan, silikon murni adalah semikonduktor intrinsik yang berarti ia dapat mengonduksi lubang elektron dan elektron dapat dilepaskan dari atom melalui pemanasan, maka meningkatkan konduktivitas listrik silikon dengan suhu tinggi. Silikon murni memiliki konduktivitas yang terlalu rendah untuk digunakan pada komponen elektronik. Pada praktiknya, silikon murni didoping dengan elemen lain dengan konsentrasi kecil sehingga meningkatkan konduktivitasnya secara drastis. Kontrol penambahan elemen lain ini sangat penting dan umumnya diaplikasikan di transistor, sel solar, detektor semikonduktor dan perangkat semikonduktor lainnya.

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Silikon

fotovoltaik

Fotovoltaik

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 18 Februari 2025


Fotovoltaik adalah teknologi pengubahan energi dari sinar matahari menjadi energi listrik secara langsung. Peralatan fotovoltaik berbentuk kumpulan sel surya yang disusun secara seri atau paralel dan disatukan menjadi modul surya. Aplikasi fotovoltaik diwujudkan menggunakan panel surya untuk energi dengan mengubah sinar matahari menjadi listrik. Karena permintaan yang terus meningkat terhadap sumber energi bersih, pembuatan panel surya dan kumpulan fotovoltaik telah meluas secara dramatis dalam beberapa tahun belakangan ini.

Pohon fotovoltaik di StyriaAustria

Fotovoltaik diinstal

Produksi fotovoltaik telah berlipat setiap dua tahun, meningkat rata-rata 48 persen tiap tahun sejak 2002, menjadikannya teknologi energi dengan pertumbuhan tercepat di dunia. Pada akhir 2007, menurut data awal, produksi global mencapai 12.400 megawatt. Secara kasar, 90% dari kapasitas generator ini meliputi sistem listrik terikat. Pemasangan seperti ini dilakukan di atas tanah (dan kadang-kadang digabungkan dengan pertanian dan penggarapan) atau dibangun di atap atau dinding bangunan, dikenal sebagai Building Integrated Photovoltaic atau BIPV.

Pengukuran satuan dan insentif keuangan, seperti feed-in tariff untuk listrik tenaga surya, telah membantu instalasi PV surya di banyak negara termasuk Australia, Jerman, Israel,[8] Jepang, dan Amerika Serikat. Sedangkan di Peru, dua juta rakyat miskin akan menerima energi listrik gratis dari 1600 panel surya yang akan dipasang hingga tahun 2016.

Sejarah penemuan

Pengamatan yang pertama kali berkaitan dengan efek fotovoltaik diadakan pada tahun 1839 oleh Henri Becquerel. Salah satu sel pada elektrode yang ada di sel elektrolitik diberikannya sinar matahari. Pada tahun 1877, Adams dan Day mengamati efek tersebut pada selenium. Beberapa perangkat pengukuran paparan fotografi telah dikembangkan pada paruh pertama abad ke-20 Masehi oleh tiga orang ilmuwan yaitu Lange (1930), Schottky (1930) dan Grondhal (1933). Tiga ilmuwan dari Bell Telephone Laboratory berhasil membuat sel surya dari bahan silikon kristalin yang pertama di dunia pada tahun 1954. Ketiga ilmuwan ini ialah Chaplin, Fuller dan Pearson. Efisiensi energi dari sel surya ini adalah 6%. Pada tahun yang sama, Reynold dan rekan kerjanya juga berhasil membuat sel surya dengan efisiensi energi yang sama dari bahan Kadmium sulfida.

Selama periode tahun 1950-an, sel surya berbahan silikon kristalin hanya digunakan untuk penelitian dan pengembangan teknologi luar angkasa. Tujuan awalnya untuk memperoleh satelit yang memiliki kebutuhan daya cahaya yang memadai. Pada awal tahun 1958, satelit bertenaga surya yang pertama berhasil diluncurkan. Satelit ini diberi nama Satelit American Vanguard I. Setelah peluncuran tersebut, pengembangan terus dilakukan terhadap energi surya hingga meliputi bidang militer, komunikasi, meteorologi dan penelitian ilmiah. Efisiensi energi yang diperoleh telah mencapai 20%. Produksi sel surya berbahan silikon kristalin telah mencapai harga yang mahal, yaitu $10 Juta per kiloWatt pada tahun 1975.

Perlengkapan

Panel surya

Panel surya merupakan peralatan yang terdiri dari kumpulan sel surya yang bahan dasarnya adalah semikonduktor. Alat ini digunakan untuk mengubah energi surya menjadi energi listrik. Panel surya bekerja dengan mempertemukan semikonduktor jenis P dan semikonduktor jenis N. Susunan modul suryayang ada pada panel surya dapat dirangkai secara seri maupun paralel. Pemilihan jenis rangkaian disesuaikan dengan kebutuhan daya listrik yang akan digunakan. Panel surya hanya menghasilkan arus listrik berjenis arus searah, sehingga pencatu daya bagi pemakai energi listrik harus diubah terlebih dahulu menjadi arus bolak-balik dengan menggunakan konverter.

Kebijakan mengenai standar teknis dari pemanfaatan energi surya menjadi penentu bagi pemasangan panel surya pada suatu bangunan komersial atau pada bangunan perusahaan. Optimalisasi sistem tenaga listrik dengan energi dasar berupa energi surya selalu mengutamakan penyediaan ruang bagi panel surya sebagai salah satu pertimbangan yang penting. Penerapan langsung dari kegiatan transformasi energi surya yang dilakukan oleh panel surya adalah pada pembangkit listrik tenaga surya. Usia pakai rata-rata dari sebuah panel surya rata-rata adalah 30 tahun. Setelah jangka waktu tersebut, panel surya rentan mengalami kerusakan.

Manfaat

Fotovoltaik yang digunakan pada Solar sell juga memiliki kelebihan menjadi sumber energi yang praktis mengingat tidak membutuhkan transmisi karena dapat dipasang secara modular di setiap lokasi yang membutuhkan. Fotovoltaik yang digunakan pada solar cell memiliki kemudahan, hampir disetiap tempat di Indonesia solar cell mampu dan cocok dalam pemasangannya dibandingkan dengan teknologi terbarukan seperti turbin angin (pembangkit listrik tenaga angin) yang hanya cocok pada tempat tertentu.Hingga saat ini total energi listrik yang dibangkitkan dengan solar cell di seluruh dunia baru mencapai sekitar 12 Giga Watt (bandingkan dengan total penggunaan listrik dunia sebesar 10 Tera Watt).

Fotovoltaik mampu menjadi Energi terbarukan dengan memanfaatkan tenaga surya (matahari) dimana sinar matahari mampu dikonversi menjadi energi listrik. Pembangkit listrik yang mengubah energi surya menjadi energi listrik. Pembangkitan listrik bisa dilakukan dengan dua cara, yaitu secara langsung menggunakan fotovoltaik dan secara tidak langsung dengan pemusatan energi surya. Fotovoltaik mengubah secara langsung energi cahaya menjadi listrik menggunakan efek fotoelektrik. Pemusatan energi surya menggunakan sistem lensa atau cermin dikombinasikan dengan sistem pelacak untuk memfokuskan energi matahari ke satu titik untuk menggerakan mesin kalor. Kelebihan dari pemanfaatan Fotovoltaik yaitu Mampu mengurangi biaya tagihan listrik bulanan dan menjadi nilai tambah bagi suatu negara dan jugaTeknologi Fotovoltaik ini ramah lingkungan karena hanya memanfaatkan sinar matahari menjadi energi listrik dibandingkan energi konvesional (batu bara).

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Fotovoltaik

Geodesi dan Geomatika

Garis Lintang

Dipublikasikan oleh Ririn Khoiriyah Ardianti pada 18 Februari 2025


Menurut ilmu geografigaris lintang adalah sebuah garis khayal yang digunakan untuk menentukan lokasi di Bumi yang berpusat pada garis khatulistiwa (utara atau selatan). Garis lintang yang melingkari bumi dari bagian ekuator hingga ke bagian kutub utara dan bagian kutub selatan. Posisi lintang biasanya dinotasikan dengan simbol huruf Yunani φ. Posisi lintang merupakan penghitungan sudut dari 0° di khatulistiwa sampai ke +90° di kutub utara dan -90° di kutub selatan.

Garis yang terletak di bagian utara ekuator disebut dengan garis Lintang Utara (LU), sedangkan garis yang berada di bagian selatan ekuator disebut dengan garis Lintang Selatan (LS). Jarak antara garis yang satu dengan lainnya dihitung dalam satuan derajat. Garis ekuator (khatulistiwa) dipakai sebagai patokan, sehingga garis ekuator atau khatulistiwa berada pada titik nol derajat. Makin ke utara atau makin ke selatan dari garis khatulistiwa maka angka derajat akan semakin besar hingga mencapai angka 90 derajat tepat di kutub utara atau di kutub selatan.

Ko-lintang adalah tambahan dari lintang.

Dalam bahasa Indonesia lintang di sebelah utara khatulistiwa diberi nama Lintang Utara (LU), demikian pula lintang di sebelah selatan khatulistiwa diberi nama Lintang Selatan (LS). Lintang Utara dan Lintang Selatan menyatakan besarnya sudut antara posisi lintang dengan garis Khatulistiwa. Garis Khatulistiwa sendiri adalah lintang 0 derajat.

Pembagian

Setiap derajat lintang dibagi menjadi 60 menit (satu menit lintang mendekati satu mil laut atau 1852 meter, yang kemudian dibagi lagi menjadi 60 detik. Untuk keakurasian tinggi detik digunakan dengan pecahan desimal.

Lintang yang penting

Lintang yang cukup penting adalah Garis Balik Utara (23°27′ LU), Garis Balik Selatan (23°27′ LS), Lingkar Arktik (66°33′ LU), dan Lingkar Antartik (66°33′ LS).

Hanya antara kedua Garis Balik matahari dapat berada di zenith. Hanya di utara Lingkar Arktik atau selatan Lingkar Antartik matahari tengah malam dapat terjadi. Hal ini disebabkan adanya kemiringan sumbu rotasi Bumi sekitar 23,5°.


Sumber Artikel : Wikipedia

Selengkapnya
Garis Lintang

Semikonduktor

Semikonduktor

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 18 Februari 2025


Semikonduktor adalah sebuah bahan dengan konduktivitas listrik yang berada di antara isolator listrik dan konduktor listrik. Bahan semikonduktor terdiri dari 4 elektron valensi. Jenis bahan semikondutor yang umum digunakan ialah karbon, germanium, dan silikon. Berdasarkan jenis dopingnya, bahan semikonduktor terbagi menjadi dua tipe yaitu tipe P dan tipe N. Suatu semikonduktor bersifat sebagai isolator listrik jika tidak diberi arus listrik dengan cara dan nilai besaran arus listrik tertentu. Namun pada temperatur, arus listirk, tata cara dan persyaratan kerja tertentu, semikonduktor berfungsi sebagai konduktor, misal sebagai penguat arus, penguat tegangan dan penguat daya. Untuk menggunakan suatu semikonduktor supaya bisa berfungsi harus tahu spesifikasi dan karakter semikonduktor itu, jika tidak memenuhi syarat operasinya maka akan tidak berfungsi dan rusak. Semikonduktor sangat berguna dalam bidang elektronik, karena konduktansinya yang dapat diubah-ubah dengan menyuntikkan materi lain (biasa disebut pendonor elektron). Semikonduktor digunakan pada berbagai alat semikonduktor.

Sifat kelistrikan suatu material, termasuk semikonduktor, dapat dijelaskan dengan menggunakan diagram pita energi. Diagram pita energi menjelaskan bahwa dari sekumpulan atom-atom yang terkumpul rapi membentuk struktur kristal tertentu, hanya ada sejumlah tingkat energi yang dapat ditempati oleh elektron. Elektron akan menempati tingkat energi yang rendah terlebih dahulu. Pita terakhir yang diisi oleh elektron disebut pita valensi. Sejumlah tingkat energi setelah pita valensi disebut pita konduksi. Jarak antara tingkat energi terendah di pita konduksi dan tingkat energi tertinggi di pita valensi disebut celah pita. Pada silikon, celah pita ini bernilai 1.1 eV.

Material semikonduktor yang terdiri dari unsur-unsur yang sama disebut semikonduktor intrinsik. Semikonduktor intrinsik ini memiliki sifat-sifat listrik tertentu pada suhu tertentu, misalnya jumlah muatan pembawa. Pada aplikasinya, kita ingin merekayasa jumlah muatan pembawa ini dengan cara selain merubah suhu, misalnya dengan melakukan doping pada semikonduktor intrinsik. Semikonduktor intrinsik yang telah terdoping ini disebut semikonduktor ekstrinsik.

Jenis

Semikonduktor intrinsik yang telah terdoping disebut semikonduktor ekstrinsik. Semikonduktor ekstrinsik dapat dibedakan berdasarkan golongan atom doping.

Semikonduktor tipe P

Semikonduktor tipe P merupakan semikonduktor dengan jumlah elektron yang sangat sedikit. Bahan pembuatan semikonduktor tipe P adalah campuran atom germanium dan atom indium atau atom-atom lain yang memiliki 3 elektron valensi, e.g., boron, aluminium, galium. Semikonduktor tipe P bermuatan positif karena indium memiliki lebih sedikit elektron dibandingkan dengan germanium.

Semikonduktor tipe N

Semikonduktor tipe N merupakan semikonduktor dengan jumlah elektron yang sangat banyak. Bahan pembuatan semikonduktor tipe N adalah campuran atom germanium dan atom arsen atau atom-atom lain yang memiliki 5 elektron valensi, e.g. fosfor, arsen, antimoni. Semikonduktor tipe N bermuatan negatif karena arsenikum memiliki lebih banyak elektron dibandingkan dengan germanium.

Sifat kelistrikan

Arus listrik

Kuat arus listrik pada bahan semikonduktor tidak dapat diketahui secara tepat melalui hukum Ohm. Penerapan hukum Ohm hanya berlaku bagi rangkaian listrik yang memiliki arus listrik yang selalu berbanding lurus dengan nilai tegangan listrik yang bekerja. Sebaliknya, bahan semikonduktor tidak selalu memiliki kuat arus listrik yang berada dalam fungsi linear terhadap tegangan listrik yang berlaku. Arus listrik yang mengair melalui bahan semikonduktor dapat menngalami fungsi linear, fungsi kuadrat atau fungsi kubik terhadap nilai tegangan listrik yang bekerja. Pada bahan semikonduktor berlaku efek Hall yang menentukan kerapatan arus listrik yang dinyatakan dalam muatan per satuan volume. Nilai tegangan listrik pada bahan semikonduktor ditentukan oleh pemusatan dari muatan-muatan listrik yang terbawa ke dalam bahan listrik.

Hukum kelistrikan

Hukum Child

Hukum Child berlaku pada semikonduktor yang hanya memiliki pembawa muatan dalam jumlah yang sangat sedikit. Selain itu, hukum Child hanya berlaku untuk arus listrik yang terbentuk akibat adanya muatan ruang di dalam semikonduktor. Pada semikonduktor, hukum Child hanya diterpakan pada arus listrik yang dihasilkan oleh pembawa muatan hasil injeksi dari elektrode.

Doping Semikonduktor

Distribusi Fermi-Dirac sebagai dasar struktur pita dalam semikonduktor

SEM image of a photoresist layer used in semiconductor manufacturing taken on a field electron emission SEM. These SEMs are important in the semiconductor industry for their high-resolution capabilities.

Salah satu alasan utama kegunaan semikonduktor dalam elektronik adalah sifat elektroniknya dapat diubah banyak dalam sebuah cara terkontrol dengan menambah sejumlah kecil ketidakmurnian. Ketidakmurnian ini disebut dopan.

Doping sejumlah besar ke semikonduktor dapat meningkatkan konduktivitasnya dengan faktor lebih besar dari satu milyar. Dalam sirkuit terpadu modern, misalnya, polycrystalline silicon didop-berat sering kali digunakan sebagai pengganti logam.

Pembuatan

Semikonduktor dengan properti elektronik yang dapat diprediksi dan handal diperlukan untuk produksi massa. Tingkat kemurnian kimia yang diperlukan sangat tinggi karena adanya ketidaksempurnaan, bahkan dalam proporsi sangat kecil dapat memiliki efek besar pada properti dari material. Kristal dengan tingkat kesempurnaan yang tinggi juga diperlukan, karena kesalahan dalam struktur kristal (seperti dislokasi, kembaran, dan retak tumpukan) mengganggu properti semikonduktivitas dari material. Retakan kristal merupakan penyebab utama rusaknya perangkat semikonduktor. Semakin besar kristal, semakin sulit mencapai kesempurnaan yang diperlukan. Proses produksi massa saat ini menggunakan ingot (bahan dasar) kristal dengan diameter antara empat hingga dua belas inci (300 mm) yang ditumbuhkan sebagai silinder kemudian diiris menjadi wafer.

Karena diperlukannya tingkat kemurnian kimia dan kesempurnaan struktur kristal untuk membuat perangkat semikonduktor, metode khusus telah dikembangkan untuk memproduksi bahan semikonduktor awal. Sebuah teknik untuk mencapai kemurnian tinggi termasuk pertumbuhan kristal menggunakan proses Czochralski. Langkah tambahan yang dapat digunakan untuk lebih meningkatkan kemurnian dikenal sebagai perbaikan zona. Dalam perbaikan zona, sebagian dari kristal padat dicairkan. Impuritas cenderung berkonsentrasi di daerah yang dicairkan, sedangkan material yang diinginkan mengkristal kembali sehingga menghasilkan bahan lebih murni dan kristal dengan lebih sedikit kesalahan.

Dalam pembuatan perangkat semikonduktor yang melibatkan heterojunction antara bahan-bahan semikonduktor yang berbeda, konstanta kisi, yaitu panjang dari struktur kristal yang berulang, penting untuk menentukan kompatibilitas antar bahan.

Kegunaan praktis

Detektor kristal

Semikonduktor dalam bentuk kristal digunakan untuk pembuatan detektor kristal. Pembuatan detektor kristal mulai dilakukan sejak awal abad ke-20 Masehi sebagai penghubung kawat penghantar yang menerima sinyal radio. Bentuk kawat menyerupai kumis. Bahan semikonduktor yang digunakan yaitu kristal germanium. Keberadaan sinyal radio diketahui melalui efek simpang dari kontak antara kristal dan kawat. Penguatan dan pelemahan dari kuat arus listrik dibatasi oleh elemen padat dan senyawa yang telah mengalami rekayasa secara khusus. Arus listrik yang mengalir terbagi menjadi dua jenis, yaitu elektron bermuatan negatif dan elektron yang kekurangan muatan positif. Elektron yang bermuatan negatif disebut sebagai arus muatan sedangkan yang kekurangan muatan positif disebut sebagai arus lubang. Teori fisika kuantum digunakan untuk memahami prinsip arus muatan dan arus lubang ini.

Sel surya

Sel surya memanfaatkan semikonduktor yang terdiri dari komponen dioda dengan sambungan P-N. Kegunaan utama dari sel surya adalah menghasilkan efek fotovoltaik yang mengubah sinar matahari menjadi energi listrik. Sel surya digunakan pada pembangkit listrik tenaga surya dalam skala kecil pada daerah terpencil yang tidak memiliki akses listrik. Selain itu, satelit juga menggunakan sel surya sebagai penghasil energi listrik.

Pengukuran intensitas cahaya

Elemen fotolistrik pada bahan semikonduktor digunakan untuk menggantikan peran sel foto. Sel foto digunakan untuk mengukur intensitas cahaya. Peran sel foto yang digantikan oleh semikonduktor ialah ionisasi melalui tumbukan elektron-elektron pada cermin logam.

Sensor suhu penyejuk

Sensor suhu pada penyejuk udara umumnya bekerja menggunakan termistor yang memiliki nilai koefisien suhu negatif. Prinsip kerja dari sensor suhu pendingin berbeda dengan sensor suhu pemanas. Pada sensor suhu penyejuk udara, peningkatan suhu ruangan akan membuat nilai hambatan listrik berkurang.

Mesin mobil

Beberapa mesin mobil telah menggunakan prinsip kerja dan bahan semikonduktor untuk melakukan kerja secara mekanika. Pada mobil, bahan semikonduktor dimanfaatkan pada sistem kendali, sistem suspensi, kantung udara, dan rangkaian listrik pengaman. Sistem kerja mobil yang sepenuhnya memanfaatkan bahan konduktor ialah sistem manajemen mesin, sistem rem antiterkunci, sistem transmisi, sistem instrumentasi kelistrikan, modul kendali kelistrikan pada bodi mobil dan kantung udara dengan sistem pengaman tambahan.

Elektronika daya

Pada elektronika daya, peralatan semikonduktor utamanya berfungsi sebagai saklar elektronik. Proses pensaklaran menjadi salah satu proses yang utama pada rangkaian elektronika daya. Rangkaian elektronika daya mengadakan pensaklaran dengan kecepatan tinggi. Pengaturan kecepatan didasarkan kepada melalui rangkaian pembangkit pulsa sesuai dengan kebutuhan. Pada rangkaian elektronika daya, peralatan semikonduktor juga berfungsi untuk mengubah jenis sumber energi. Jenis pengubahan yang paling umum dilakukan adalah pengubahan bentuk dari gelombang listrik. Tujuan pengubahannya adalah untuk penyesuaian antara kebutuhan sumber energi bagi peralatan listrik dengan sumber listrik yang tersedia. Jenis perubahan ini meliputi perubahan dari arus bolak-balik menjadi arus bolak-balik atau menjadi arus searah, maupun arus searah menjadi arus searah atau menjadi arus bolak-balik. Besaran listrik yang diubah bentuk gelombangnya dapat dpilih antara arus listrik ataupun pada tegangan listrik. Fungsi lain dari peralatan semikonduktor pada elektronika daya adalah pengendalian terhadap aplikasi elektronika industri sesuai dengan keinginan. Pengaturan dilakukan terhadap besaran listrik seperti arus listrik, tegangan listrik dan daya listrik. Tujuan pengaturan ini ialah memberikan pengaruh terhadap sistem kerja yang ada pada industri. Pemakaian yang umum di industri antara lain untuk pengaturan kecepatan putaran, pengaturan tekanan, pengaturan suhu, dan pengaturan kecepatan gerakan.

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Semikonduktor

Geodesi dan Geomatika

Garis Bujur

Dipublikasikan oleh Ririn Khoiriyah Ardianti pada 18 Februari 2025


Garis Bujur (λ), adalah suatu garis khayal yang ditarik dari ujung kutub utara sampai ke kutub selatan yang digunakan untuk menentukan lokasi di bumi pada globe atau peta. Garis bujur menggambarkan lokasi sebuah tempat di timur atau barat Bumi dari sebuah garis utara-selatan yang disebut Meridian Utama. Garis Bujur dihitung berdasarkan pengukuran sudut dari 0° di Meridian Utama ke +180° arah timur dan −180° arah barat. Tidak seperti lintang yang memiliki ekuator sebagai posisi awal alami, tidak ada posisi awal alami untuk bujur. Oleh karena itu, sebuah garis meridian harus dipilih. Meskipun kartografer Britania Raya telah lama menggunakan meridian Observatorium Greenwich di London, referensi lainnya digunakan di tempat yang berbeda, termasuk FerroRomaKopenhagenYerusalemSaint PetersburgPisaParisPhiladelphia, dan Washington, D.C.. Pada 1884Konferensi Meridian Internasional mengadopsi meridian Greenwich sebagai Meridian utama universal atau titik nol bujur.

Garis bujur utama atau Bujur 0° melalui Kota GreenwichInggris. Garis bujur yang terletak di sebelah timur Greenwich disebut Bujur Timur (BT) sedangkan Garis bujur yang terletak di sebelah barat Greenwich disebut Bujur Barat (BB). Garis bujur timur dimulai dari Bujur 0° BT hingga 180° BT. Garis bujur barat dimulai dari Bujur 0° BB hingga 180° BB. Kedua garis ini berhimpit di Samudera Pasifik.

Dalam bahasa Indonesia bujur di sebelah barat Meridian diberi nama Bujur Barat (BB), demikian pula bujur di sebelah timur Meridian diberi nama Bujur Timur (BT). Nama-nama ini tidak dijumpai dalam bahasa Inggris. Bujur Barat dan Bujur Timur merupakan garis khayal yang menghubungkan titik Kutub Utara dengan Kutub Selatan bumi dan menyatakan besarnya sudut antara posisi bujur dengan garis Meridian. Garis Meridian sendiri adalah bujur 0 derajat.

Sumber Artikel : Wikipedia

Selengkapnya
Garis Bujur

Konversi energi

Sel Surya

Dipublikasikan oleh Viskha Dwi Marcella Nanda pada 18 Februari 2025


Sel surya atau sel fotovoltaik, adalah sebuah alat semikonduktor yang terdiri dari sebuah wilayah-besar dioda pertemuan p-n, di mana dengan adanya cahaya matahari dapat menciptakan energi listrik yang berguna. Pengubahan bentuk energi ini disebut efek fotovoltaik. Bidang riset berhubungan dengan sel surya dikenal sebagai fotovoltaik.

Sel surya memiliki banyak aplikasi. Mereka terutama cocok untuk digunakan bila tenaga listrik dari grid tidak tersedia, seperti di wilayah terpencil, satelit pengorbit bumi, kalkulator genggam, pompa air, dll. Sel surya (dalam bentuk modul atau panel surya) dapat dipasang di atap gedung di mana mereka berhubungan dengan inverter ke grid listrik dalam sebuah pengaturan net metering.

Banyak bahan semikonduktor yang dapat dipakai untuk membuat sel surya diantaranya silikon, titanium oksida, germanium, dll.

Aplikasi

Rakitan sel surya digunakan untuk membuat modul surya yang menghasilkan daya listrik dari sinar matahari, yang dibedakan dari "modul termal surya" atau "panel air panas surya". Jajaran surya menghasilkan tenaga surya menggunakan energi matahari.

Sel, panel, modul, dan sistem

Dari sel surya ke sistem PV. Diagram komponen yang mungkin dari sistem fotovoltaik

Beberapa sel surya dalam kelompok terpadu, semuanya berorientasi dalam satu bidang, membentuk panel atau modul fotovoltaik surya. Modul fotovoltaik sering kali memiliki selembar kaca di sisi yang menghadap matahari, memungkinkan cahaya untuk lewat dan melindungi wafer semikonduktor. Sel surya biasanya dihubungkan secara seri dan paralel atau seri dalam modul, menciptakan tegangan tambahan. Menghubungkan sel secara paralel menghasilkan arus yang lebih tinggi. Namun, masalah seperti efek bayangan dapat mematikan string paralel (sejumlah sel yang terhubung secara seri) yang lebih lemah (kurang menyala) menyebabkan kehilangan daya yang substansial dan kemungkinan kerusakan karena bias balik diterapkan pada sel-sel yang tertutupi oleh sel lainnya yang disoroti cahaya. String sel seri biasanya ditangani secara independen dan tidak terhubung secara paralel, meskipun hingga tahun 2014 kotak daya individu telah sering dipasok untuk setiap modul dan terhubung secara paralel. Meskipun modul dapat dihubungkan untuk membuat jajaran surya dengan tegangan DC puncak yang diinginkan dan kapasitas arus pemuatan, MPPT independen lebih disukai (pelacak titik daya maksimum). Jika tidak, dioda shunt dapat mengurangi hilangnya daya bayangan dalam jajaran surya menggunakan sel yang terhubung secara seri/paralel.   

Harga sistem PV tipikal pada 2013 di negara-negara tertentu ($/W)

Sejarah

Efek fotovoltaik didemonstrasikan pertama kali oleh fisikawan Prancis Edmond Becquerel. Pada tahun 1839, pada usia 19, ia membangun sel fotovoltaik pertama di dunia di laboratorium ayahnya. Willoughby Smith pertama kali menggambarkan "Effect of Light on Selenium during the passage of an Electric Current" ("Pengaruh Cahaya pada Selenium selama perjalanan Arus Listrik") dalam Nature edisi 20 Februari 1873. Pada tahun 1883 Charles Fritts membangun sel fotovoltaik padat pertama dengan melapisi selenium semikonduktor dengan lapisan tipis emas untuk membentuk persimpangan; perangkat ini hanya memiliki efisiensi sekitar 1%. Capaian lain termasuk:

  • 1888 - Fisikawan Rusia Aleksandr Stoletov membangun sel pertama berdasarkan efek fotolistrik luar yang ditemukan oleh Heinrich Hertz pada tahun 1887.
  • 1905 - Albert Einstein mengusulkan teori kuantum cahaya yang baru dan menjelaskan efek fotolistrik dalam makalah penting, di mana ia menerima Hadiah Nobel dalam Fisika pada tahun 1921.
  • 1941 - Vadim Lashkaryov menemukan pertemuan p-n pada sel proto Cu2O dan Ag2S.
  • 1946 - Russell Ohl mematenkan sel surya semikonduktor junction modern, sambil mengerjakan serangkaian kemajuan yang akan mengarah pada transistor.
  • 1954 - sel fotovoltaik praktis pertama didemonstrasikan secara publik di Bell Laboratories. Para penemu adalah Calvin Souther Fuller, Daryl Chapin dan Gerald Pearson.
  • 1958 - sel surya menjadi terkenal dengan penggabungannya ke satelit Vanguard I.

NASA menggunakan sel surya di pesawat ruang angkasa sejak awal. Sebagai Contoh, Explorer 6, diluncurkan pada tahun 1959, memiliki empat jajaran yang akan terbuka begitu mencapai orbit. jajaran ini menyediakan daya untuk berbulan-bulan di luar angkasa.

Aplikasi luar angkasa

Sel surya pertama kali digunakan dalam aplikasi yang menonjol ketika mereka diusulkan dan diterbangkan pada satelit Vanguard pada tahun 1958, sebagai sumber daya alternatif ke sumber daya baterai utama. Dengan menambahkan sel ke bagian satelit, waktu misi dapat diperpanjang tanpa perubahan besar pada pesawat ruang angkasa atau sistem dayanya. Pada tahun 1959 Amerika Serikat meluncurkan Explorer 6, menampilkan jajaran surya besar berbentuk sayap, yang menjadi fitur umum pada satelit tersebut. Jajaran ini terdiri dari 9600 sel surya Hoffman.

Pada 1960-an, sel surya adalah sumber daya utama untuk sebagian besar satelit yang mengorbit Bumi dan sejumlah wahana antariksa di tata surya, karena menawarkan rasio daya-terhadap-berat yang terbaik. Namun, keberhasilan ini dimungkinkan karena dalam aplikasi luar angkasa, biaya sistem daya bisa begitu tinggi, karena pengguna ruang memiliki sedikit opsi daya lain, dan kesediaan membayar untuk sel surya terbaik. Pasar tenaga luar angkasa mendorong pengembangan efisiensi yang lebih tinggi dalam sel surya hingga program Yayasan Sains Nasional "Penelitian yang Diterapkan untuk Kebutuhan Nasional" mulai mendorong pengembangan sel surya untuk aplikasi terestrial.

Pada awal 1990-an teknologi yang digunakan untuk sel surya luar angkasa membelok dari teknologi silikon yang digunakan untuk panel terestrial, dengan aplikasi pesawat ruang angkasa bergeser ke bahan semikonduktor III-V berbasis galium arsenida, yang kemudian berkembang menjadi sel fotovoltaik multipertemuan III-V modern yang digunakan di pesawat luar angkasa.

Penurunan biaya

Pemutakhiran terjadi secara bertahap selama 1960-an. Ini juga merupakan alasan bahwa biaya sel surya begitu tinggi, karena pengguna bersedia membayar untuk sel terbaik, tanpa meninggalkan alasan untuk berinvestasi dalam solusi yang lebih murah dan kurang efisien. Harga sebagian besar ditentukan oleh industri semikonduktor; perpindahan tren menuju sirkuit terpadu pada 1960-an menyebabkan ketersediaan boule yang lebih besar dengan harga relatif lebih rendah. Ketika harganya turun, harga sel yang dihasilkan juga. Efek ini menurunkan biaya sel pada tahun 1971 menjadi sekitar $ 100 per watt.

Pada akhir 1969 Elliot Berman bergabung dengan gugus tugas Exxon yang sedang mencari proyek 30 tahun di masa depan dan pada April 1973 ia mendirikan Solar Power Corporation, anak perusahaan yang sepenuhnya dimiliki Exxon pada waktu itu. Kelompok ini menyimpulkan bahwa daya listrik akan jauh lebih mahal pada tahun 2000, dan merasa bahwa kenaikan harga ini akan membuat sumber energi alternatif lebih menarik. Dia melakukan studi pasar dan menyimpulkan bahwa harga per watt sekitar $ 20/watt akan menciptakan permintaan yang signifikan. Tim menghilangkan langkah-langkah memoles wafer dan melapisinya dengan lapisan anti-reflektif, dengan mengandalkan permukaan wafer gergajian kasar. Tim juga mengganti bahan-bahan mahal dan kabel tangan yang digunakan dalam aplikasi luar angkasa dengan papan sirkuit cetak di bagian belakang, plastik akrilik di bagian depan, dan lem silikon di antara keduanya, "pot" sel. Sel surya dapat dibuat menggunakan bahan buangan dari pasar elektronik. Pada tahun 1973 mereka mengumumkan produk, dan SPC meyakinkan Tideland Signal untuk menggunakan panelnya untuk memberi daya pada pelampung navigasi, awalnya untuk US Coast Guard.

Pengurangan biaya dan pertumbuhan eksponensial

Volume energi sel surya Si dan minyak yang dikumpulkan oleh manusia per dolar, dan intensitas karbon dari beberapa teknologi pembangkit listrik utama.

Menyesuaikan inflasi, biayanya adalah $ 96 per watt untuk modul surya pada pertengahan 1970-an. Peningkatan proses dan peningkatan produksi yang sangat besar telah menurunkan angka itu menjadi 99%, menjadi 68 ¢ per watt pada 2016, menurut data dari Bloomberg New Energy Finance. Hukum Swanson adalah pengamatan yang mirip dengan Hukum Moore yang menyatakan bahwa harga sel surya turun 20% untuk setiap penggandaan kapasitas industri. Itu ditampilkan dalam sebuah artikel di surat kabar mingguan Inggris The Economist pada akhir 2012.

Pemutakhiran lebih lanjut mengurangi biaya produksi hingga di bawah $ 1 per watt, dengan biaya grosir jauh di bawah $ 2. Biaya saldo sistem sejak saat itu menjadi lebih tinggi daripada biaya panel surya itu sendiri. Jajaran komersial besar dapat dibangun, pada 2010, di bawah $ 3,40 per watt, sepenuhnya beroperasi.

Ketika industri semikonduktor berpindah menuju boule yang semakin besar, peralatan lama menjadi tidak mahal. Ukuran sel surya tumbuh ketika peralatan menjadi tersedia di pasar surplus; Panel asli ARCO Solar menggunakan sel dengan diameter 2 hingga 4 inci (50 hingga 100 mm). Panel pada 1990-an dan awal 2000-an umumnya digunakan wafer 125 mm. Dan sejak 2008, hampir semua panel baru menggunakan sel 156 mm. Penyebaran dari televisi layar datar pada akhir 1990-an dan awal 2000-an menyebabkan tersedianya lembaran kaca besar berkualitas tinggi untuk menutupi panel.

Selama tahun 1990-an, sel polisilikon ("poli") menjadi semakin populer. Sel-sel ini menawarkan efisiensi yang lebih rendah dibandingkan dengan monosilikon ("mono"), tetapi mereka tumbuh dalam kuantitas besar yang mengurangi biaya. Pada pertengahan 2000-an, sel poli menjadi dominan di pasar panel berbiaya rendah, tetapi baru-baru ini mono kembali digunakan secara luas.

PV surya tumbuh tercepat di Asia, dengan Tiongkok dan Jepang saat ini menyumbang setengah dari penyebaran di seluruh dunia.[19] Kapasitas PV terpasang global mencapai setidaknya 301 gigawatt pada 2016, dan tumbuh untuk memasok 1,3% daya global pada 2016.

Faktanya, energi yang dikumpulkan oleh sel surya silikon dengan biaya satu dolar telah melampaui energi yang dihasilkan oleh minyak dengan biaya yang sama sejak 2004. Diperkirakan bahwa listrik dari PV akan bersaing dengan biaya listrik grosir di seluruh Eropa dan waktu pengembalian energi dari modul silikon kristal dapat dikurangi hingga di bawah 0,5 tahun pada tahun 2020.

Material

Sel surya biasanya dinamai dengan bahan semikonduktor pembuatnya. Bahan-bahan ini harus memiliki karakteristik tertentu untuk menyerap sinar matahari. Beberapa sel dirancang untuk menangani sinar matahari yang mencapai permukaan bumi, sementara yang lain dioptimalkan untuk digunakan di luar angkasa. Sel surya dapat dibuat hanya dari satu lapisan tunggal bahan penyerap cahaya (pertemuan tunggal) atau menggunakan beberapa konfigurasi fisik (multipertemuan) untuk memanfaatkan berbagai mekanisme penyerapan dan pemisahan muatan.

Sel surya dapat diklasifikasikan menjadi sel generasi pertama, kedua dan ketiga. Sel generasi pertama — juga disebut sel konvensional, tradisional, atau berbasis wafer — terbuat dari silikon kristal, teknologi PV yang dominan secara komersial, yang mencakup bahan-bahan seperti polisilikon dan silikon monokristalin. Sel generasi kedua adalah sel surya film tipis, yang meliputi silikon amorf, CdTe dan sel CIGS dan secara komersial signifikan dalam skala pembangkit listrik fotovoltaik, membangun fotovoltaik terintegrasi atau dalam sistem daya kecil yang berdiri sendiri. Generasi ketiga dari sel surya mencakup sejumlah teknologi film tipis yang sering digambarkan sebagai fotovoltaik pegari (emerging) — kebanyakan dari teknologi generasi ini belum diterapkan secara komersial dan masih dalam tahap penelitian atau pengembangan. Banyak yang menggunakan bahan organik, sering kali senyawa organologam serta zat anorganik. Terlepas dari kenyataan bahwa efisiensinya rendah dan stabilitas bahan penyerap sering kali terlalu rendah untuk aplikasi komersial, ada banyak penelitian yang diinvestasikan ke dalam teknologi ini karena mereka menjanjikan untuk mencapai tujuan menghasilkan biaya rendah, efisiensi tinggi sel surya.

Silikon kristal

Sejauh ini, bahan curah paling umum untuk sel surya adalah silikon kristal (c-Si), juga dikenal sebagai "silikon kualitas sel surya". Kumpulan silikon dipisahkan menjadi beberapa kategori sesuai dengan kristalinitas dan ukuran kristal dalam ingot, pita atau wafer yang dihasilkan. Sel-sel ini seluruhnya didasarkan pada konsep pertemuan p-n. Sel surya yang terbuat dari c-Si terbuat dari wafer dengan tebal antara 160 dan 240 mikrometer.

Silikon monokristalin

Sel surya silikon monokristalin (mono-Si) lebih efisien dan lebih mahal daripada kebanyakan jenis sel lainnya. Sudut-sudut sel terlihat terpotong, seperti segi delapan, karena bahan wafer dipotong dari ingot silinder, yang biasanya dibuat melalui proses Czochralski. Panel surya menggunakan sel mono-Si menampilkan pola khas berlian putih kecil.

Pengembangan silikon epitaksial

Wafer epitaksial silikon kristalin dapat ditumbuhkan pada wafer "benih" silikon monokristalin oleh deposisi uap kimia (CVD), dan kemudian terlepas sebagai wafer yang menopang diri sendiri dengan ketebalan standar (misalnya, 250 μm) yang dapat dimanipulasi dengan tangan, dan secara langsung diganti dengan sel wafer yang dipotong dari ingot silikon monokristalin. Sel surya yang dibuat dengan teknik "tanpa kerf" ini dapat memiliki efisiensi mendekati sel-sel wafer-cut, tetapi dengan biaya yang jauh lebih rendah jika CVD dapat dilakukan pada tekanan atmosfer dalam proses inline dengan throughput yang tinggi. Permukaan wafer epitaksial mungkin bertekstur untuk meningkatkan penyerapan cahaya.

Pada Juni 2015, dilaporkan bahwa sel surya heterojunction yang ditumbuhkan secara epitaksial pada wafer silikon tipe-n monokristalin telah mencapai efisiensi 22,5% dari total luas sel 243,4 cm{\displaystyle ^{2}}{\displaystyle ^{2}}.

Silikon polikristalin

Sel silikon polikristalin, atau silikon multikristalin (multi-Si) dibuat dari ingot kotak — blok besar silikon cair yang didinginkan dan dipadatkan dengan hati-hati. Sel ini terdiri dari kristal-kristal kecil yang memberikan material efek serpihan logam yang khas. Sel polisilikon adalah jenis yang paling umum digunakan dalam fotovoltaik dan lebih murah, tetapi juga kurang efisien, dibandingkan dengan yang dibuat dari silikon monokristalin.

Silikon pita

Silikon pita adalah jenis silikon polikristalin — dibentuk dengan menarik film tipis rata dari silikon cair dan menghasilkan struktur polikristalin. Sel-sel ini lebih murah daripada multi-Si, karena pengurangan besar dalam limbah silikon, karena pendekatan ini tidak memerlukan penggergajian dari ingot. Namun, sel ini juga kurang efisien.

Silikon mono-seperti-multi (MLM)

Bentuk sel ini dikembangkan pada 2000-an dan diperkenalkan secara komersial sekitar 2009. Juga disebut cor-mono, desain ini menggunakan ruang pencetakan polikristalin dengan "biji" kecil material monokristalin. Hasilnya adalah material seperti monokristalin yang dikelilingi polikristalin di permukaan luarnya. Ketika diiris untuk diproses, bagian dalam adalah sel seperti monokristalin efisiensi tinggi (tetapi bentuknya persegi bukannya "terpotong"), sedangkan tepi luarnya dalah polikristalin konvensional. Metode produksi ini menghasilkan sel seperti monokristalin dengan harga mirip polikristalin.

Film tipis

Teknologi film tipis mengurangi jumlah bahan aktif dalam sel. Sebagian besar desain menempatkan bahan aktif di antara dua panel kaca. Karena panel surya silikon hanya menggunakan satu panel kaca, panel film tipis kira-kira dua kali lebih berat dari panel silikon kristal, meskipun mereka memiliki dampak ekologis yang lebih kecil (ditentukan dari analisis siklus nyala).

Kadmium telurida

Kadmium telurida adalah satu-satunya bahan film tipis sejauh ini yang mampu menyaingi silikon kristal dalam hal biaya/watt. Namun kadmium sangat beracun dan persediaan telurium (anion: "telurium") terbatas. Kadmium yang ada dalam sel akan beracun jika dilepaskan begitu saja. Namun, pelepasan tidak mungkin terjadi selama operasi normal sel dan tidak mungkin terjadi saat ada kebakaran di atap rumah.[31] Satu meter persegi CdTe mengandung kira-kira jumlah Cd yang sama dengan baterai nikel kadmium sel C tunggal, dalam bentuk yang lebih stabil dan kurang terlarut.

Tembaga indium galium selenida

Tembaga indium galium selenida (CIGS) adalah bahan celah pita langsung. Sel ini memiliki efisiensi tertinggi (~ 20%) di antara semua bahan film tipis yang signifikan dan tersedia secara komersial (lihat sel surya CIGS). Metode fabrikasi tradisional melibatkan proses vakum termasuk co-evaporasi dan sputtering. Perkembangan terbaru di IBM dan Nanosolar berupaya untuk menurunkan biaya dengan menggunakan proses solusi non vakum.

Film tipis silikon

Sel film tipis silikon terutama disimpan oleh deposisi uap kimia (biasanya ditingkatkan plasma, PE-CVD) dari gas silena dan gas hidrogen. Tergantung pada parameter deposisi, proses ini dapat menghasilkan silikon amorf (a-Si atau a-Si:H), silikon protokristalin atau silikon nanokristalin (nc-Si atau nc-Si:H), juga disebut silikon mikrokristalin.

Silikon amorf adalah teknologi film tipis yang paling berkembang saat ini. Sel surya silikon amorf (a-Si) terbuat dari silikon nonkristal atau mikrokristalin. Silikon amorf memiliki celah pita yang lebih tinggi (1,7 eV) dari silikon kristalin (c-Si) (1,1 eV), yang berarti sel itu cenderung menyerap bagian dari spektrum matahari yang terlihat daripada bagian spektrum inframerah dengan kepadatan daya yang lebih tinggi. Produksi sel surya film tipis-Si menggunakan kaca sebagai substrat dan menyimpan lapisan silikon yang sangat tipis dengan deposisi uap kimia yang ditingkatkan plasma (PECVD).

Silikon protokristalin dengan fraksi volume rendah silikon nanokristalin optimal untuk tegangan rangkaian terbuka tinggi.[34] Nc-Si memiliki celah pita yang hampir sama dengan c-Si dan nc-Si dan a-Si secara menguntungkan dapat dikombinasikan dalam lapisan tipis, menciptakan sel berlapis yang disebut sel tandem. Sel atas berupa a-Si menyerap cahaya tampak dan meninggalkan bagian spektrum inframerah untuk sel bawah yang berupa nc-Si.

Film tipis galium arsenida

Bahan semikonduktor galium arsenida (GaAs) juga digunakan untuk sel surya film tipis kristal tunggal. Meskipun sel-sel GaAs sangat mahal, sel ini memegang rekor dunia dalam efisiensi untuk sel surya pertemuan tunggal pada 28,8%.[35] GaAs lebih umum digunakan dalam sel fotovoltaik multipertemuan untuk fotovoltaik terkonsentrasi (CPV, HCPV) dan untuk panel surya pada wahana antariksa, karena industri lebih menyukai efisiensi daripada biaya untuk tenaga surya berbasis antariksa. Berdasarkan literatur sebelumnya dan beberapa analisis teoritis, ada beberapa alasan mengapa GaAs memiliki efisiensi konversi daya yang tinggi. Pertama, celah pita GaAs adalah 1,43 ev yang hampir ideal untuk sel surya. Kedua, karena Gallium adalah produk sampingan dari peleburan logam lain, sel-sel GaAs relatif tidak sensitif terhadap panas dan dapat menjaga efisiensi tinggi ketika suhu cukup tinggi. Ketiga, GaAs memiliki berbagai pilihan desain. Menggunakan GaAs sebagai lapisan aktif dalam sel surya, para insinyur dapat memiliki banyak pilihan lapisan lain yang dapat menghasilkan elektron dan lubang lebih baik pada GaAs.

Manufaktur

Kalkulator bertenaga surya generasi awal

Sel surya berbagi beberapa teknik pemrosesan dan pembuatan yang sama seperti perangkat semikonduktor lainnya. Namun, persyaratan ketat untuk kebersihan dan kontrol kualitas fabrikasi semikonduktor lebih longgar untuk sel surya, sehingga menurunkan biaya produksinya.

Wafer silikon polikristalin dibuat dengan menggergaji ingot silikon cetak blok menjadi wafer dengan ketebalan 180 hingga 350 mikrometer. Wafer biasanya berbentuk tipe-p-terdoping. Difusi permukaan dopan tipe-n dilakukan di sisi depan wafer. Ini membentuk pertemuan p-n beberapa ratus nanometer di bawah permukaan.

Lapisan antipantulan kemudian biasanya diterapkan untuk meningkatkan jumlah cahaya yang diterima sel surya. Silikon nitrida secara bertahap menggantikan titanium dioksida sebagai bahan pilihan, karena kualitas pasivasi permukaannya yang sangat baik. Ini mencegah rekombinasi pembawa di permukaan sel. Lapisan setebal beberapa ratus nanometer diaplikasikan menggunakan metode PECVD. Beberapa sel surya memiliki permukaan depan bertekstur yang, seperti lapisan antipantul, meningkatkan jumlah cahaya yang mencapai wafer. Permukaan semacam itu pertama kali diterapkan pada silikon kristal tunggal, diikuti oleh silikon multikristalin kemudian.

Kontak logam area penuh dibuat di permukaan belakang, dan kontak logam seperti kisi yang terbuat dari "jari" halus dan "batang bus" yang lebih besar dicetak dengan layar ke permukaan depan menggunakan pasta perak. Ini adalah evolusi dari apa yang disebut proses "basah" untuk penerapan elektroda, pertama kali dijelaskan dalam paten AS yang diajukan pada tahun 1981 oleh Bayer AG. Kontak belakang dibentuk dengan sablon pasta logam, biasanya aluminium. Biasanya kontak ini menutupi seluruh bagian belakang, meskipun beberapa desain menggunakan pola kisi. Pasta tersebut kemudian ditembakkan pada beberapa ratus derajat celcius untuk membentuk elektroda logam dalam kontak ohmik dengan silikon. Beberapa perusahaan menggunakan langkah pelapisan listrik tambahan untuk meningkatkan efisiensi. Setelah kontak logam dibuat, sel surya dihubungkan dengan kabel pipih atau pita logam, dan dirangkai menjadi modul atau "panel surya". Panel surya memiliki selembar kaca temper di bagian depan, dan enkapsulasi polimer di bagian belakang.

Sebuah sel surya, terbuat dari wafer silikon poly-crystalline.

Sel surya

 

Sumber Artikel: id.wikipedia.org

Selengkapnya
Sel Surya
« First Previous page 611 of 1.031 Next Last »