Pertanian

Perkembangan Pesat: Industri Benih Hortikultura Membuka Horison Baru di Tanah Air

Dipublikasikan oleh Dewi Sulistiowati pada 13 Februari 2025


Guru Besar Fakultas Pertanian Universitas Gadjah Mada sekaligus Anggota Tim Penilai dan Pendaftaran Varietas Hortikultura, Direktorat Jenderal Hortikultura, Kementan RI, Prof. Dr. Ir. Aziz Purwantoro, mengatakan industri benih hortikultura di Indonesia semakin tumbuh dan berkembang dengan banyaknya jenis varietas baru untuk tanaman sayuran dan buah-buahan yang dirilis ke publik. “Selama 13 tahun saya menjadi anggota penilai, lebih dari seratus produsen benih yang tumbuh dan telah merilis 400 hingga 500 varietas baru untuk tanaman hortikultura dan sekitar 60-70 persen lebih banyak sayuran,” karta Aziz Purwantoro kepada wartawan usai mengisi pelatihan Best Practice dalam Pemuliaan Tanaman di ruang pertemuan Pusat Inovasi Agroindustri (PIAT) UGM, Berbah, Sleman, Yogyakarta, Kamis (21/9).

Menurut Aziz, sebagian besar produsen penghasil benih ini didominasi pelaku usaha UMKM yang umumnya pemiliknya adalah orang yang telah lama berkecimpung di perusahan yang bergerak dalam bidang pertanian. “Mereka mau berkecimpung dalam bidang pertanian, karena industri benih ini tidak membutuhkan modal besar. Mereka umumnya jebolan dari perusahaan, paling tidak tahu soal pemasarannya,” paparnya.

Industri benih hortikultura ini menurut pandangan Aziz merupakan bisnis di bidang pertanian yang saat ini prospek bisnisnya cukup menjanjikan bagi pelaku usahanya. “Di bidang pertanian, industri perbenihan ini yang paling menopang, satu kilo benih saja bisa dijual hingga ratusan ribu rupiah,” jelasnya.

Untuk varietas baru yang dirilis oleh produsen benih ini menurut Aziz didominasi jenis tanaman sayuran seperti cabai, terong, bawang merah dan sebagainya. Sedangkan untuk tanaman buah ada melon dan semangka. “Untuk tanaman buah berbentuk pohon biasanya diakui oleh yang bekerja sama dengan pemilik,” katanya.

Menjawab pertanyaan wartawan, Aziz menjelaskan untuk melepas jenis varietas baru tanaman hortikultura memerlukan waktu pemuliaan tanaman sekitar 3-4 tahun. “Kadang dua tahun saja bisa. Karena sayuran itu sekitar 3-4 bulan sudah panen. Umumnya varietas baru ini memiliki keunggulan dari sisi produksi lebih tinggi atau lebih tahan terhadap hama,” katanya.

Kepala PIAT UGM sekaligus pakar pemuliaan tanaman dari Fakultas Pertanian UGM, Prof. Dr. Ir. Taryono, mengatakan setiap varietas baru yang dirilis ke publik hendaknya memberi nilai tambah bagi produk pertanian dan memiliki keunggulan dari tanaman sejenis di pasaran. “Harus ada sesuatu yang berbeda dari sisi keunggulannya agar kita memiliki kekayaan sumber daya genetik,” katanya.

Salah satu pelaku bisnis industri benih, Mulyono Herlambang, mengatakan sebagian besar benih pertanian di Indonesia masih impor sehingga pemerintah menurutnya perlu mendorong agar industri benih terus tumbuh dan berkembangn. Menurutnya teknologi perbenihan atau breeding bertujuan untuk memperoleh varietas dengan produktivitas tinggi dan kualitas tinggi. “Produktivitas yang tinggi justru akan laku di pasaran,” paparnya.

Seorang breeder, kata Mulyono, harus jeli untuk memperoleh performa varietas tanaman yang unggul dari sisi kualitas dan kuantitas serta tahan terhadap hama penyakit, cuaca ekstrim dan memiliki kandungan zat tertentu seperti vitamin. “Tugas breeder itu mengisi dan mampu menyilang dari sisi keunggulan yang paling dominan dari satu jenis tanaman,” kata eksportir benih asal Karanganyar Jawa Tengah ini.

 

Sumber: https://ugm.ac.id

Selengkapnya
Perkembangan Pesat: Industri Benih Hortikultura Membuka Horison Baru di Tanah Air

Pertambangan dan Perminyakan

Melangkah ke Masa Depan Industri: 5 Kampus di Indonesia dengan Program Metalurgi yang Dikenal secara Internasional

Dipublikasikan oleh Dewi Sulistiowati pada 13 Februari 2025


Bagi calon siswa yang ingin mengambil jurusan teknik, jurusan Teknik Metalurgi dapat menjadi pilihan yang menarik. Di antaranya, lima kampus telah menerima akreditasi internasional.

Jurusan Teknik Metalurgi mungkin terdengar asing bagi beberapa orang. Namun, lulusan jurusan ini memiliki banyak kesempatan kerja, terutama di industri ini. Jurusan ini termasuk dalam bidang keteknikan dan mempelajari hal-hal seperti proses pengolahan mineral, ekstraksi, pembuatan paduan, penguatan, degradasi, dan hubungan antara sifat mekanik dan struktur logam. Di Indonesia sendiri, ada banyak perguruan tinggi dengan program Teknik Metalurgi, beberapa di antaranya dianggap sebagai universitas terbaik. Ini adalah salah satunya.

Kampus dengan Jurusan Metalurgi Favorit di Tanah Air

1. Institut Teknologi Bandung (ITB)

Mahasiswa program S-1 Teknik Metalurgi ITB akan belajar tentang prinsip dan bagaimana fisika, matematika, kimia, dan teknik dapat digunakan untuk berbagai hal dan kebutuhan. Secara historis, jurusan ini pertama kali dibuka untuk umum pada Juni 2006.

ITB. Foto/ITB.


Menurut situs resmi ITB, program teknik metalurgi juga telah menerima akreditasi nasional dan internasional. LAMTech memiliki predikat "Unggul" (2022-2025). Alumni Teknik Metalurgi ITB telah banyak bekerja di berbagai industri, termasuk pertambangan (PT Freeport, PT Aneka Tambang, dll.), baja (PT Krakatau Steel, dll.), ekstraksi logam (PT Vale, PT INALUM, dll.), dan sektor lainnya.

2. Universitas Indonesia (UI)

Universitas Indonesia (UI) adalah salah satu perguruan tinggi negeri terkemuka di Tanah Air dengan banyak peminat yang mendaftar di berbagai jurusan setiap tahunnya. UI juga memiliki prodi Teknik Metalurgi dan Material karena banyaknya jurusan yang tersedia. Program studi ini menerima akreditasi internasional pada tahun 2022, setelah menerima akreditasi nasional.

UI. Foto/Humas UI.

Menurut laman resmi UI, 9 dari 13 program studi sarjana FTUI telah menerima akreditasi dari Badan Akreditasi Pendidikan Teknik Indonesia (BAPTI). Salah satu namanya adalah Teknik Metalurgi dan Material.

3.Universitas Sultan Ageng Tirtayasa (Untirta)

Jurusan Teknik Metalurgi juga ada di Universitas Sultan Ageng Tirtayasa (Untirta). Tujuan program ini adalah untuk menghasilkan lulusan metalurgi yang profesional, berdaya saing, dan mampu mengembangkan diri.

Untirta. Foto/Untirta.


Dalam hal akreditasi, Teknik Metalurgi Untirta telah diberikan akreditasi BAN-PT dengan predikat "A". Sertifikat ini berlaku dari 9 April 2019 hingga 9 April 2024.

4. UPN Veteran Yogyakarta

Selanjutnya, UPN Veteran Yogyakarta. Mereka juga memiliki jurusan Teknik Metalurgi. Visi mereka adalah menjadi lembaga pendidikan tinggi dan riset ilmu pengetahuan dalam bidang teknik metalurgi yang berwawasan kebangsaan pada tahun 2025, didasarkan pada Jiwa Bela Negara.

UPN Veteran Yogyakarta. Foto/Priyo Setyawan.

Akreditasi Teknik Metalurgi UPN Veteran Yogyakarta menerima predikat "Baik" dari BAN-PT dan masih berlaku hingga 25 Agustus 2025.

5. Institut Teknologi Sepuluh Nopember (ITS) Surabaya

ITS juga memiliki prodi Teknik Material dan Metalurgi. Menjadi bagian dari Departemen Teknik Material dan Metalurgi ITS, jurusan ini telah mendapat akreditasi, baik dari lembaga nasional hingga internasional.

ITS. Foto/Humas ITS.

Berikut adalah beberapa universitas di Indonesia yang terkenal dengan program studi Teknik Metalurgi. Semoga daftar ini bermanfaat bagi pembaca SINDOnews yang setia.

 

Dari Sumber: https://edukasi.sindonews.com/read/1154449/211/5-kampus-dengan-jurusan-metalurgi-favorit-di-indonesia-ada-yang-punya-akreditasi-internasional-1689642463

Selengkapnya
Melangkah ke Masa Depan Industri: 5 Kampus di Indonesia dengan Program Metalurgi yang Dikenal secara Internasional

Pertambangan dan Perminyakan

Menyelami Dunia Metalurgi: Persiapan Menuju Jurusan Teknik

Dipublikasikan oleh Dewi Sulistiowati pada 13 Februari 2025


Mengenal jurusan Teknik Metalurgi

Teknik metalurgi adalah bidang ilmu teknik yang mempelajari proses pengolahan mineral, ekstraksi, pembuatan paduan, penguatan, dan hubungan sifat mekanik dan struktur logam. Mereka yang ingin masuk ke jurusan ini akan mempelajari lebih dalam tentang sifat-sifat logam untuk membuat logam berguna.

Jurusan Metalurgi fokus mempelajari tentang pengolahan logam dan mineral. (Sumber: ft.uts.ac.id)

Sementara para ahli kimia menggambarkan metalurgi sebagai proses ekstraksi logam dari tambang. Meskipun demikian, jurusan metalurgi tidak hanya terlibat dalam ekstraksi logam, tetapi juga dalam produksi logam dengan tujuan mendapatkan logam yang bermanfaat.

Mata kuliah di jurusan Teknik Metalurgi

Mahasiswa Teknik Metalurgi akan mempelajari banyak hal tentang logam, khususnya cara diekstraksi. Mereka juga akan belajar bagaimana memadukan logam dengan bahan lain, membuat dan memperbaiki struktur, dan bagaimana struktur mikro mempengaruhi sifat logam paduannya.

Selain itu, kunjungan industri akan diberikan kepada siswa untuk memperoleh pengetahuan praktis. Menurut situs web Jurusan Teknik Metalurgi Institut Teknologi Bandung (ITB), kunjungan ini akan dilakukan dua kali: pada tahun kedua melalui program Kuliah Kerja dan pada tahun ketiga melalui program Kerja Praktek.

Sebelum mendaftar di jurusan Teknik Metalurgi, Anda harus mengetahui beberapa mata kuliah yang akan diajarkan di bawah ini.

  1. Teknik Metalurgi
  2. Kristal dan Mineral Kinetika Metalurgi
  3. Penggunaan Mineral Industri
  4. Konsentrasi Flotasi
  5. Hidro-elektrometalurgi
  6. Termodinamika
  7. Kekuatan
  8. Perhitungan
  9. Pirometalurgi
  10. Proses

Daftar perguruan tinggi dengan jurusan Teknik Metalurgi

Jurusan Teknik Metalurgi tersedia di Institut Teknologi Bandung (ITB) dan masuk ke Fakultas Teknik Pertambangan dan Perminyakan (FTTM). Jika Anda berhasil masuk ke jurusan ini, Anda dapat langsung lanjut ke jenjang S2. karena Institut Teknologi Bandung (ITB) menawarkan kursus S1 dan S2.

Selain itu, perguruan tinggi negeri berikut memiliki jurusan Teknik Metalurgi.

  1. Di Institut Teknologi Sepuluh Nopember (ITS) Surabaya 
  2. Jurusan Teknik Material dan Metalurgi
  3. Di Universitas Jenderal Achmad Yani (Unjani) di Bandung, ada jurusan Teknik Metalurgi.
  4. Di Universitas Indonesia (UI) di Jakarta, ada jurusan Teknik Metalurgi dan Material.
  5. Di Universitas Sultan Ageng Tirtayasa (Untirta) di Banten, ada jurusan Teknik Metalurgi di Institut Teknologi dan Sains (ITSB) di Bekasi.

Prospek kerja jurusan Teknik Metalurgi

Setelah lulus dari jurusan Metalurgi, Anda akan menerima gelar Sarjana Teknik. Apakah pertanyaan selanjutnya yang muncul di benak Anda adalah apakah lulusan Teknik Metalurgi memiliki kesempatan kerja yang menjanjikan?

Jarang dilirik, jurusan Metalurgi ternyata punya prospek kerja yang menjanjikan. (Sumber: cekaja.com)

Bisa dibilang, Iya. Jurusan ini memiliki bidang pekerjaan yang cukup luas. Beberapa pekerjaan yang tersedia di jurusan metalurgi adalah sebagai berikut:

  1. Perusahaan tambang dan batu bara
  2. Pabrik ekstraksi logam
  3. Pabrik semen
  4. Perusahaan minyak dan gas
  5. Manufaktur
  6. Konstruksi
  7. Dosen
  8. Jasa konsultan 
  9. Pemasaran
  10. Pemerintahan
  11. Lembaga penelitian

Sementara itu, UU No. 4 tahun 2009 melarang perusahaan pertambangan mengekspor biji logam yang belum diolah atau diekstrak, yang meningkatkan kebutuhan akan ahli metalurgi atau lulusan teknik metalurgi di Indonesia. Itu bagus, bukan?

Membicarakan tentang gaji, tentu saja hal ini mengacu pada banyak hal, seperti pengalaman kerja, posisi, jabatan, dan perusahaan tempat Anda bekerja. Meskipun demikian, lulusan Teknik Metalurgi biasanya menerima gaji antara Rp3,5 juta dan Rp7 juta per bulan.

Sumber: ruangguru.com

Selengkapnya
Menyelami Dunia Metalurgi: Persiapan Menuju Jurusan Teknik

Pertambangan dan Perminyakan

Metalurgi: Metalurgi Ekstraktif

Dipublikasikan oleh Dewi Sulistiowati pada 13 Februari 2025


Metalurgi ekstraktif

Setelah pemisahan dan konsentrasi dengan pemrosesan mineral, mineral logam mengalami metalurgi ekstraktif, di mana elemen logamnya diekstraksi dari bentuk senyawa kimia dan dimurnikan dari pengotor.

Senyawa logam sering kali merupakan campuran yang cukup kompleks (yang diolah secara komersial sebagian besar adalah sulfida, oksida, karbonat, arsenida, atau silikat), dan mereka tidak sering kali merupakan jenis yang memungkinkan ekstraksi logam dengan proses yang sederhana dan ekonomis. Akibatnya, sebelum metalurgi ekstraktif dapat mempengaruhi pemisahan elemen logam dari konstituen lain dari suatu senyawa, sering kali harus mengubah senyawa tersebut menjadi jenis yang lebih mudah diolah. Praktik yang umum dilakukan adalah mengubah sulfida logam menjadi oksida, sulfat, atau klorida; oksida menjadi sulfat atau klorida; dan karbonat menjadi oksida.

Proses yang mencapai semua ini dapat dikategorikan sebagai pirometalurgi atau hidrometalurgi. Pirometalurgi melibatkan operasi pemanasan seperti pemanggangan, di mana senyawa diubah pada suhu tepat di bawah titik lelehnya, dan peleburan, di mana semua konstituen bijih atau konsentrat dilebur seluruhnya dan dipisahkan menjadi dua lapisan cair, satu mengandung logam berharga dan yang lainnya adalah batuan buangan. Hidrometalurgi terdiri dari operasi seperti pelindian, di mana senyawa logam dilarutkan secara selektif dari bijih oleh pelarut berair, dan electrowinning, di mana ion logam diendapkan pada elektroda oleh arus listrik yang dilewatkan melalui larutan.

Ekstraksi sering kali diikuti dengan pemurnian, di mana tingkat pengotor diturunkan atau dikontrol dengan cara pirometalurgi, elektrolitik, atau kimiawi. Pemurnian pirometalurgi biasanya terdiri dari oksidasi pengotor dalam penangas cairan bersuhu tinggi. Elektrolisis adalah pelarutan logam dari satu elektroda sel elektrolitik dan pengendapannya dalam bentuk yang lebih murni ke elektroda lainnya. Pemurnian kimia melibatkan kondensasi logam dari uap atau pengendapan logam secara selektif dari larutan air.

Proses yang akan digunakan dalam ekstraksi dan pemurnian dipilih agar sesuai dengan pola keseluruhan, dengan produk dari proses pertama menjadi bahan umpan proses kedua, dan seterusnya. Proses hidrometalurgi, pirometalurgi, dan elektrolitik sangat umum digunakan satu demi satu dalam pengolahan logam tunggal. Pilihannya tergantung pada beberapa kondisi. Salah satunya adalah bahwa jenis senyawa logam tertentu dapat diekstraksi dengan mudah dengan metode tertentu; misalnya, oksida dan sulfat mudah larut dalam larutan pelindian, sedangkan sulfida hanya sedikit larut. Kondisi lainnya adalah tingkat kemurnian, yang dapat bervariasi dari satu jenis ekstraksi ke jenis lainnya.

Produksi seng menggambarkan hal ini, di mana logam seng yang dihasilkan oleh retort pirometalurgi atau operasi tanur tiup adalah 98 persen murni, dengan jejak timbal, besi, dan kadmium. Hal ini cukup memadai untuk menggembleng, tetapi kemurnian yang lebih disukai untuk die-casting (99,99 persen) harus diperoleh secara hidrometalurgi, dari elektrolisis larutan seng sulfat. Yang juga harus dipertimbangkan dalam memilih metode pemrosesan adalah pemulihan pengotor tertentu yang mungkin memiliki nilai sebagai produk sampingan. Salah satu contohnya adalah pemurnian tembaga: pemurnian pirometalurgi dari tembaga lepuh menghilangkan banyak pengotor, tetapi tidak memulihkan atau menghilangkan perak atau emas; namun, logam-logam mulia dipulihkan melalui pemurnian elektrolitik berikutnya.

Pirometalurgi

Dua proses pirometalurgi yang paling umum, baik dalam ekstraksi maupun pemurnian, adalah oksidasi dan reduksi. Dalam oksidasi, logam yang memiliki afinitas tinggi terhadap oksigen secara selektif bergabung dengannya untuk membentuk oksida logam; ini dapat diolah lebih lanjut untuk mendapatkan logam murni atau dapat dipisahkan dan dibuang sebagai produk limbah. Reduksi dapat dipandang sebagai kebalikan dari oksidasi. Dalam proses ini, senyawa oksida logam dimasukkan ke dalam tungku bersama dengan zat pereduksi seperti karbon. Logam melepaskan oksigen gabungannya, yang bergabung kembali dengan karbon untuk membentuk oksida karbon baru dan meninggalkan logam dalam bentuk yang tidak tercampur.

Reaksi oksidasi dan reduksi bersifat eksotermis (melepaskan energi) atau endotermis (menyerap energi). Salah satu contoh reaksi eksotermik adalah oksidasi besi sulfida (FeS) untuk membentuk oksida besi (FeO) dan gas sulfur dioksida (SO2):


Proses ini mengeluarkan panas dalam jumlah besar melebihi yang dibutuhkan untuk memulai reaksi. Salah satu reaksi endotermik adalah reduksi peleburan seng oksida (ZnO) oleh karbon monoksida (CO) untuk menghasilkan logam seng (Zn) dan karbon dioksida (CO2):


Agar reaksi ini dapat berjalan dengan kecepatan yang wajar, panas eksternal harus disuplai untuk mempertahankan suhu pada 1.300 hingga 1.350 ° C (2.375 hingga 2.450 ° F).

Pemanggangan

Seperti yang dinyatakan di atas, untuk kasus-kasus di mana senyawa yang mengandung logam tidak dalam bentuk kimia yang memungkinkan logam tersebut dapat dihilangkan dengan mudah dan ekonomis, pertama-tama perlu untuk mengubahnya menjadi senyawa lain. Perlakuan awal yang biasa digunakan untuk melakukan hal ini adalah pemanggangan.

Proses

Ada beberapa jenis pemanggangan yang berbeda, masing-masing dimaksudkan untuk menghasilkan reaksi tertentu dan menghasilkan produk panggang (atau kalsinasi) yang sesuai untuk operasi pemrosesan tertentu yang akan dilakukan. Prosedur pemanggangan adalah:

1. Pemanggangan oksidasi, yang menghilangkan semua atau sebagian sulfur dari senyawa logam sulfida, menggantikan sulfida dengan oksida. (Sulfur yang dihilangkan keluar sebagai gas sulfur dioksida.) Pemanggangan oksidator bersifat eksotermis.

2. Panggang sulfat, yang mengubah logam tertentu dari sulfida menjadi sulfat. Panggang sulfat bersifat eksotermik.

3. Panggang pereduksi, yang menurunkan status oksida atau bahkan sepenuhnya mereduksi oksida menjadi logam. Panggang pereduksi bersifat eksotermik.

4. Panggang kloridasi, atau klorinasi, yang mengubah oksida logam menjadi klorida dengan memanaskannya dengan sumber klorin seperti gas klorin, gas asam klorida, amonium klorida, atau natrium klorida. Reaksi-reaksi ini bersifat eksotermik.

5. Panggang penguapan, yang menghilangkan oksida yang mudah menguap dengan mengubahnya menjadi gas.

6. Kalsinasi, di mana bahan padat dipanaskan untuk menghilangkan karbon dioksida atau air yang digabungkan secara kimiawi. Kalsinasi adalah reaksi endotermik.

Pemanggang

Setiap proses di atas dapat dilakukan dalam pemanggang khusus. Jenis yang paling umum digunakan adalah fluidized-bed, multiple-hearth, flash, chlorinator, rotary kiln, dan mesin sintering (atau blast roaster).

Pemanggang unggun terfluidisasi (lihat gambar) telah diterima secara luas karena kapasitas dan efisiensinya yang tinggi. Alat ini dapat digunakan untuk mengoksidasi, mensulfatasi, dan menguapkan daging panggang. Pemanggang adalah cangkang baja silinder tegak berlapis tahan api dengan bagian bawah jeruji yang melaluinya udara dihembuskan dalam volume yang cukup untuk menjaga partikel umpan yang halus dan padat tetap berada dalam suspensi dan memberikan kontak padat-gas yang sangat baik. Umpan bijih dapat dimasukkan dalam keadaan kering atau sebagai suspensi air melalui pipa bawah ke dalam zona lapisan turbulen pemanggang. Pembuangan kalsin yang dipanggang dilakukan melalui pipa luapan samping.

Pemanggang dengan banyak perapian juga telah diterima secara luas karena dapat digunakan untuk proses oksidasi, sulfatisasi, kloridasi, penguapan, reduksi, dan kalsinasi. Pemanggang adalah cangkang baja silinder vertikal berlapis tahan api yang di dalamnya ditempatkan sejumlah perapian tahan api yang ditumpangkan. Poros tengah yang berputar perlahan memutar lengan rakyat jelata di setiap perapian untuk mengaduk bahan pemanggang dan mendorongnya ke dalam lubang jatuh yang mengarah ke perapian di bawahnya. Bahan pakan dimasukkan ke perapian atas, dan, karena mengikuti jalur zig-zag melintasi perapian dan ke bawah, bahan tersebut bertemu dengan aliran gas yang naik yang mempengaruhi pemanggangan. Kalsin dibuang dari perapian bawah.

Pemanggang flash hanya digunakan untuk mengoksidasi daging panggang dan, pada dasarnya, merupakan pemanggang dengan banyak perapian dengan perapian tengah dihilangkan. Desain ini muncul dengan kesadaran bahwa sebagian besar oksidasi terjadi karena partikel-partikelnya benar-benar jatuh dari perapian ke perapian.

Diagram skematik dari pemanggang unggun terfluidisasi.

Klorinator digunakan untuk memanggang oksida menjadi klorida. Mereka adalah cangkang baja melingkar tinggi yang dilapisi dengan bata tahan api untuk mencegah serangan klorin pada baja. Bagian atas setiap klorinator memiliki hopper tertutup untuk pengisian umpan secara berkala, dan klorin gas atau cair ditambahkan di bagian bawah unit. Panas disuplai oleh hambatan listrik melalui dinding cangkang dan oleh reaksi eksotermik yang mungkin terjadi. Produk tergantung pada reaksi kloridasi yang terjadi, dengan magnesium diklorida, misalnya, terbentuk sebagai cairan encer dan titanium tetraklorida keluar sebagai gas.

Kalsinasi karbonat menjadi oksida dilakukan dalam tanur putar horisontal, yang merupakan cangkang bundar baja ringan yang dilapisi dengan bahan tahan api dan memiliki panjang 10 hingga 12 kali diameter. Dengan kemiringan sedikit ke bawah dari ujung umpan ke ujung pembuangan, kiln berputar secara perlahan sementara pembakar berbahan bakar yang terletak di dalam kiln menyediakan panas yang dibutuhkan.

Mesin sintering, atau pemanggang ledakan, dapat melakukan pemanggangan oksidasi atau reduksi dan kemudian menggumpalkan kalsinasi yang dipanggang, atau dapat digunakan untuk aglomerasi saja. (Aglomerasi adalah peleburan bahan umpan halus menjadi potongan yang lebih besar yang dapat dimasukkan ke dalam tanur sembur atau retort, sehingga menghilangkan masalah kehilangan umpan halus dalam semburan udara panas). Reaksi oksidasi atau reduksi bersifat eksotermik, tetapi agar aglomerasi saja dapat dilakukan, bahan bakar seperti kokas halus harus dicampur dengan muatan.

Mesin sintering terdiri dari sabuk tak berujung dari palet logam yang bergerak dengan dasar parut di mana muatan umpan halus disebarkan dan dilewatkan di bawah pembakar. Saat muatan menyala, palet melewati kotak angin hisap, sehingga udara yang ditarik melalui lapisan umpan menyebabkan pembakaran (yaitu, oksidasi) sulfur atau karbon berlanjut dari atas ke bawah. Karena suhunya tinggi dan tidak ada agitasi pada umpan, fusi parsial terjadi pada permukaan partikel, membuat mereka saling menempel dalam bentuk klinker berpori dan seluler yang dikenal sebagai sinter.

Peleburan

Peleburan adalah proses yang membebaskan unsur logam dari senyawanya sebagai logam cair yang tidak murni dan memisahkannya dari bagian batuan buangan yang menjadi terak cair. Ada dua jenis peleburan, yaitu peleburan reduksi dan peleburan matte. Dalam peleburan reduksi, muatan logam yang dimasukkan ke dalam smelter dan terak yang terbentuk dari proses tersebut adalah oksida; dalam peleburan matte, terak adalah oksida sedangkan muatan logam adalah kombinasi sulfida logam yang meleleh dan bergabung kembali untuk menghasilkan sulfida logam yang homogen yang disebut matte.

Peleburan reduksi

Banyak jenis tungku yang digunakan untuk peleburan reduksi. Blast furnace secara universal digunakan dalam mereduksi senyawa seperti oksida besi, oksida seng, dan oksida timbal, meskipun ada perbedaan besar antara desain tungku yang digunakan dalam setiap kasus. Besi, yang ditemukan secara alami dalam bijih oksida hematit dan magnetit, dilebur dalam tanur tiup yang tinggi, melingkar, dan tertutup (lihat gambar). Umpan sinter atau pelet yang terdiri dari kokas (untuk bahan bakar), batu kapur (sebagai fluks untuk pembuatan terak), dan oksida besi dimasukkan ke dalam bagian atas tanur melalui lonceng ganda atau saluran yang berputar, dan udara panas dihembuskan melalui nozel, atau tuyeres, yang berada di dekat bagian bawah tanur. Dalam reaksi pembakaran berikutnya, oksigen di udara bergabung dengan karbon dalam kokas, menghasilkan panas yang cukup untuk melelehkan muatan tungku dan membentuk karbon monoksida, yang pada gilirannya mengurangi oksida besi menjadi besi metalik. Tungku disegel untuk mencegah keluarnya gas karbon monoksida, yang kemudian diambil dan dibakar sebagai bahan bakar untuk memanaskan udara tuyere. Di dalam perapian di bagian bawah tungku, terak cair dan besi terkumpul dalam dua lapisan, terak yang lebih ringan di bagian atas. Keduanya secara berkala dibuang, terak dibuang dan besi dimurnikan menjadi baja.

Tanur sembur dan kompor sembur panas

Tanur sembur seng juga merupakan tungku tertutup, dengan muatan oksida seng sinter dan kokas yang dipanaskan terlebih dahulu yang ditambahkan melalui bel pengisian tertutup. Tungku ini berbentuk persegi panjang, dengan poros yang lebih pendek dari tanur tiup besi. Semburan udara panas melalui tuyeres menyediakan oksigen untuk membakar kokas untuk mendapatkan panas dan memasok gas pereduksi karbon monoksida. Seng yang telah tereduksi keluar dari tungku sebagai uap, dan ini dialirkan ke bak penyemprotan timbal cair dan dikondensasikan menjadi logam seng cair. Terak dan timbal yang ada di dalam muatan disadap sebagai cairan dari perapian tungku. (Untuk ilustrasi tanur tiup timbal-seng, lihat gambar).

Tanur sembur

Tanur tiup timbal memiliki ukuran dan bentuk yang serupa dengan tanur tiup seng, namun bukan merupakan tanur tertutup, dan tidak menggunakan udara tuyere yang telah dipanaskan sebelumnya. Muatan sinter oksida timbal, kokas, dan fluks dituangkan ke dalam bagian atas tungku yang terbuka, dan atmosfer pereduksi yang kuat di dalam poros tungku mereduksi oksida menjadi logam. Timbal cair dan terak terkumpul dalam dua lapisan di perapian tungku, dengan timbal di lapisan bawah dan terak di atas.

Dua proses yang lebih baru untuk reduksi langsung konsentrat timbal sulfida yang belum dipanggang adalah QSL (Queneau-Schuhmann-Lurgi) dan KIVCET (singkatan dari bahasa Rusia yang berarti "peleburan kilat-siklon-oksigen-listrik"). Di dalam reaktor QSL, injeksi oksigen terlindung yang terendam mengoksidasi timbal sulfida menjadi logam timbal, sedangkan KIVCET adalah jenis tungku peleburan kilat di mana konsentrat timbal sulfida yang telah dikeringkan digabungkan dengan oksigen di dalam sebuah poros untuk menghasilkan logam timbal.

Peleburan matte

Tujuan utama peleburan matte adalah untuk melebur dan menggabungkan kembali muatan ke dalam matte yang homogen dari logam tembaga, nikel, kobalt, dan sulfida besi serta menghasilkan terak besi dan silikon oksida. Hal ini dilakukan di banyak jenis tungku pada bahan baku sulfida yang dipanggang maupun yang tidak dipanggang.

Tungku gema pada dasarnya adalah kotak bata tahan api persegi panjang yang dilengkapi dengan pembakar dinding ujung untuk menyediakan panas untuk peleburan. Tungku ini relatif tidak berisik, dan tidak mengeluarkan banyak umpan halus (yang ditambahkan melalui lubang atap) dengan gas buang. Matte disadap secara berkala dari lubang tengah, sementara terak mengalir terus menerus di ujung cerobong tungku. Tombak oksigen yang dimasukkan melalui atap, atau oksigen yang ditambahkan melalui pembakar, dapat meningkatkan kapasitas peleburan secara signifikan.

Tungku listrik mirip dengan tungku gema kecuali untuk metode pemanasan - dalam hal ini deretan elektroda yang diproyeksikan melalui atap ke dalam lapisan terak di perapian tungku dan pemanasan dengan resistansi.

Peleburan kilat merupakan perkembangan yang relatif baru yang telah diterima di seluruh dunia. Ini adalah proses autogenous, menggunakan oksidasi sulfida dalam muatan yang tidak dipanggang untuk memasok panas yang dibutuhkan untuk mencapai suhu reaksi dan melelehkan bahan umpan. Tungku yang paling banyak digunakan memiliki poros reaksi vertikal di salah satu ujung perapian yang panjang dan mengendap rendah dan poros penyerapan gas vertikal di ujung lainnya. Umpan yang halus dan belum dipanggang ditiupkan ke dalam poros reaksi bersama dengan udara yang telah dipanaskan sebelumnya; ini bereaksi secara instan, dan tetesan cairan jatuh ke perapian pengendapan, terpisah menjadi lapisan terak dan matte. Gas buangan, yang mengandung sulfur dioksida yang tinggi, sangat ideal untuk proses pemulihan sulfur.

Tahap kedua dari peleburan matte adalah mengubah sulfida menjadi logam. Selama bertahun-tahun bejana standar untuk operasi ini adalah konverter Peirce-Smith. Ini adalah drum baja horisontal yang dapat diputar, berlapis tahan api, dengan bukaan di bagian tengah atas untuk pengisian dan pengosongan, serta sederet tuyere di bagian belakangnya yang melaluinya udara, udara yang diperkaya oksigen, atau oksigen dapat dihembuskan ke dalam penangas cairan. Matte cair dari tungku peleburan dituangkan ke dalam konverter, setelah itu gas dihembuskan melalui tuyere untuk mengoksidasi besi terlebih dahulu dan kemudian belerang. Belerang keluar sebagai gas sulfur dioksida dan besi sebagai terak oksida besi, meninggalkan logam setengah murni. Panas yang cukup besar dihasilkan oleh reaksi eksotermik ini, menjaga cairan rendaman dan mempertahankan suhu reaksi yang diperlukan.

Proses yang lebih baru memanfaatkan evolusi panas eksotermis untuk menyelesaikan peleburan sulfida yang belum dipanggang dan konversi matte dalam satu operasi gabungan. Proses-proses tersebut adalah proses Noranda, TBRC (konverter rotari top-blown), dan Mitsubishi. Reaktor Noranda adalah tungku silinder horisontal dengan cekungan di bagian tengah tempat logam terkumpul dan perapian yang ditinggikan di salah satu ujungnya tempat terak dialirkan. Konsentrat sulfida yang belum dipanggang dalam bentuk pelet dituangkan ke dalam penangas cair di salah satu ujungnya, di mana tuyeres menginjeksikan campuran udara-oksigen. Hal ini menyebabkan terjadinya aksi pencampuran yang intens yang membantu proses peleburan, peleburan, dan oksidasi, yang mengikuti satu sama lain secara berurutan, dengan memanfaatkan panas eksotermik.

TBRC juga berbentuk silinder tetapi miring 17° ke arah horizontal, memiliki mulut terbuka di ujung atas untuk pengisian dan penuangan, dan berputar dengan kecepatan 5 hingga 40 putaran per menit. Tombak yang dimasukkan melalui mulut dapat memberikan kombinasi oksigen, udara, atau gas alam untuk menabrak rendaman cair dan menciptakan kondisi yang diperlukan untuk peleburan dan oksidasi. Kombinasi hembusan permukaan dan rotasi bath meningkatkan kinerja konverter. Proses Mitsubishi adalah operasi konversi peleburan kontinu yang menggunakan tiga tungku stasioner secara seri. Tungku pertama adalah untuk peleburan, dengan tombak oksigen dan pembakar berbahan bakar dimasukkan melalui atap. Terak dan matte mengalir dari sini ke tungku pembersih terak (dipanaskan dengan busur listrik), dan matte bermutu tinggi mengalir dari sini ke tungku pengubah, di mana udara yang diperkaya oksigen dihembuskan ke dalam bak mandi melalui tombak atap. Panas eksotermis yang dihasilkan di sini cukup untuk menjaga agar rendaman tetap berada pada suhu reaksi.

Peleburan elektrolitik

Peleburan juga dilakukan dengan disosiasi elektrolitik, pada suhu tinggi, dari senyawa klorida logam cair (seperti yang dilakukan dengan magnesium) atau bubuk oksida logam yang dilarutkan dalam elektrolit cair (seperti yang dilakukan dengan aluminium). Dalam setiap kasus, arus listrik dialirkan melalui rendaman untuk memisahkan senyawa logam; logam yang dilepaskan terkumpul di katoda, sementara gas dilepaskan di anoda.

Sel peleburan magnesium terdiri dari panci baja yang berfungsi sebagai katoda; dua baris elektroda grafit dimasukkan melalui penutup tahan api sebagai anoda. Elektrolitnya adalah campuran klorida, dengan magnesium klorida sebanyak 20 persen, dan sel dipertahankan pada suhu 700 ° C (1.300 ° F). Aliran arus memecah magnesium klorida menjadi gas klorin dan logam magnesium, yang masing-masing menuju ke anoda dan katoda.

Dalam proses peleburan Hall-Héroult, senyawa aluminium oksida yang hampir murni yang disebut alumina dilarutkan pada suhu 950 °C (1.750 °F) dalam elektrolit cair yang terdiri dari aluminium, natrium, dan fluor; ini dielektrolisis untuk menghasilkan logam aluminium di katoda dan gas oksigen di anoda. Sel peleburan adalah kotak baja berlapis karbon, yang berfungsi sebagai katoda, dan sederet elektroda grafit yang dimasukkan ke dalam rendaman berfungsi sebagai anoda.

Pemurnian

Pemurnian adalah prosedur terakhir untuk menghilangkan (dan sering kali memulihkan sebagai produk sampingan) sejumlah kecil pengotor yang tersisa setelah langkah-langkah ekstraksi utama selesai. Prosedur ini meninggalkan unsur logam utama dalam keadaan murni untuk aplikasi komersial. Prosedur ini dilakukan dengan tiga cara: pemurnian dengan api, elektrolitik, atau dengan metode kimia.

Pemurnian dengan api

Besi, tembaga, dan timbal dimurnikan dengan api melalui oksidasi selektif. Dalam proses ini, oksigen atau udara ditambahkan ke dalam logam cair yang tidak murni; pengotor teroksidasi sebelum logam dan dibuang sebagai terak oksida atau gas oksida yang mudah menguap.

Sebuah toko tungku oksigen dasar.

Tungku oksigen dasar (BOF) adalah bejana yang digunakan untuk mengubah besi kasar, yang terdiri dari sekitar 94 persen besi dan 6 persen pengotor gabungan seperti karbon, mangan, dan silikon, menjadi baja dengan sedikitnya 1 persen pengotor gabungan. BOF adalah unit berbentuk buah pir besar yang dapat dimiringkan untuk mengisi dan menuangkan. Besi cair tanur sembur dan potongan baja dimasukkan ke dalam tungku; kemudian diputar ke posisi tegak dan tombak dimasukkan untuk meniupkan gas oksigen bertonase tinggi ke dalam rendaman. Reaksi oksidasi terjadi dengan cepat, dengan silikon dan mangan teroksidasi terlebih dahulu dan bergabung membentuk terak oksida, kemudian karbon teroksidasi menjadi gas karbon monoksida dan terbakar menjadi karbon dioksida saat meninggalkan mulut tungku. Reaksi ini sangat eksotermis dan menjaga bejana tetap pada suhu reaksinya tanpa ada panas eksternal atau bahan bakar yang ditambahkan.

Tembaga melepuh yang diproduksi konverter dan timah tanur sembur juga diolah dengan pemurnian api, dengan kedua proses tersebut bergantung pada afinitas yang lebih lemah terhadap oksigen dari logam dibandingkan dengan pengotor yang dikandungnya. Tembaga cair dalam tungku tipe reverberatory kecil memiliki udara bertekanan yang dihembuskan ke dalamnya melalui pipa-pipa baja di bawah permukaan. Hal ini mengoksidasi seng, timah, besi, timbal, arsenik, antimon, dan belerang; belerang keluar sebagai gas belerang dioksida, sementara pengotor lainnya membentuk terak oksida yang disaring. Timah dimurnikan dengan cara yang hampir sama, yaitu dengan meniupkan udara bertekanan ke dalam rendaman timah cair dan pengotor utama berupa timah, antimon, dan arsenik teroksidasi sesuai dengan urutannya, naik ke permukaan sebagai skim dan dikikis.

Operasi pemurnian dengan api lainnya menggunakan distilasi fraksional. Dengan metode ini, logam seng dengan kemurnian 98 persen dapat ditingkatkan menjadi 99,995 persen. Pengotor utama dalam seng tanur sembur adalah timbal dan kadmium, dengan titik didih timbal pada suhu 1.744°C (3.171°F), seng pada suhu 907°C (1.665°F), dan kadmium pada suhu 765°C (1.409°F). Pada tahap pertama, seng dan kadmium direbus, menyisakan timbal cair, dan pada tahap kedua, kadmium direbus untuk menyisakan logam seng dengan kemurnian tinggi.

Pemurnian elektrolitik

Metode ini menghasilkan produk logam dengan kemurnian tertinggi serta pemulihan terbaik dari pengotor-pengotor yang berharga. Metode ini digunakan untuk tembaga, nikel, timbal, emas, dan perak. Logam yang akan dimurnikan dilemparkan ke dalam lempengan, yang menjadi anoda sel elektrolitik; lembaran logam lainnya adalah katoda. Kedua elektroda dicelupkan ke dalam elektrolit berair yang mampu menghantarkan arus listrik. Saat arus listrik dialirkan ke sel, ion logam larut dari anoda dan mengendap di katoda. Lumpur tak larut yang tertinggal di dalam sel diolah untuk mendapatkan kembali logam-logam produk sampingan yang berharga.

Pemurnian kimia

Contoh pemurnian kimia adalah proses nikel karbonil, di mana logam nikel yang tidak murni direaksikan secara selektif dengan gas karbon monoksida untuk membentuk gas nikel karbonil. Gas ini kemudian diuraikan untuk menghasilkan logam nikel dengan kemurnian tinggi.

Hidrometalurgi

Hidrometalurgi berkaitan dengan pencucian selektif senyawa logam untuk membentuk larutan yang darinya logam dapat diendapkan dan dipulihkan. Proses pelindian digunakan jika merupakan metode yang paling sederhana atau jika kadar bijih terlalu rendah untuk prosedur ekstraktif yang lebih mahal.

Konversi

Karena tidak semua bijih dan konsentrat ditemukan secara alami dalam bentuk yang memuaskan untuk pelindian, maka bijih dan konsentrat tersebut harus melalui operasi pendahuluan. Sebagai contoh, bijih sulfida, yang relatif tidak larut dalam asam sulfat, dapat dikonversi menjadi bentuk yang cukup larut dengan mengoksidasi atau mensulfatisasi roasting. Di sisi lain, bijih oksida dan konsentrat dapat diberikan pemanggangan reduksi terkendali untuk menghasilkan kalsin yang mengandung logam tereduksi yang akan larut dengan mudah di dalam larutan pelindian. Perlakuan-perlakuan ini dijelaskan secara lebih rinci di atas (lihat Pirometalurgi: Pemanggangan).

Perlakuan kedua yang populer untuk mengubah sulfida adalah oksidasi tekanan, di mana sulfida dioksidasi menjadi struktur berpori yang menyediakan akses yang baik untuk larutan pelindian. Pengolahan ini dikembangkan untuk pemulihan emas dari bijih sulfida, yang tidak cocok untuk pelindian sianida tanpa terlebih dahulu dioksidasi. Bubur konsentrat yang digiling halus dipanaskan terlebih dahulu hingga 175°C (350°F) dan dipompa ke dalam autoklaf empat atau lima kompartemen, dengan masing-masing kompartemen berisi pengaduk. Oksigen gas ditambahkan ke setiap kompartemen, dan waktu retensi dalam autoklaf adalah dua jam untuk mencapai oksidasi yang diinginkan.

Pencucian

Oksida dilindi dengan pelarut asam sulfat atau natrium karbonat, sedangkan sulfat dapat dilindi dengan air atau asam sulfat. Amonium hidroksida digunakan untuk bijih asli, karbonat, dan sulfida, sedangkan natrium hidroksida digunakan untuk oksida. Larutan sianida adalah pelarut untuk logam mulia, sementara larutan natrium klorida melarutkan beberapa klorida. Dalam semua kasus, pelarut pelindian harus murah dan tersedia, kuat, dan lebih disukai selektif untuk nilai-nilai yang ada.

Pelindian dilakukan dengan dua metode utama: pelindian sederhana pada suhu lingkungan dan tekanan atmosfer; dan pelindian bertekanan, di mana tekanan dan suhu dinaikkan untuk mempercepat operasi. Metode yang dipilih tergantung pada kadar bahan baku, dengan bahan baku yang lebih kaya memerlukan pengolahan yang lebih mahal dan lebih ekstensif.

Pelindian di tempat, atau pelindian in situ, dilakukan pada bijih yang terlalu jauh di bawah tanah dan memiliki kadar yang terlalu rendah untuk dilakukan pengolahan di permukaan. Larutan pelindian disirkulasikan ke bawah melalui badan bijih yang retak untuk melarutkan kandungan mineral dan kemudian dipompa ke permukaan, di mana kandungan mineral diendapkan.

Pelindian timbunan dilakukan pada bijih dengan kadar semilow - yaitu cukup tinggi untuk dibawa ke permukaan untuk diolah. Metode ini semakin populer seiring dengan semakin banyaknya tonase bijih kadar rendah yang ditambang. Bijih ditumpuk di atas bantalan dan disemprot dengan larutan pelindian, yang menetes ke bawah melalui tumpukan tersebut sambil melarutkan kandungannya. Larutan yang mengandung mineral-mineral tersebut dialirkan dan dibawa ke tangki pengendapan.

Bijih dengan kadar yang lebih tinggi diolah dengan pencucian tangki, yang dilakukan dengan dua cara. Salah satu metode berskala sangat besar, dengan beberapa ribu ton bijih diolah sekaligus dalam tangki beton besar dengan larutan yang bersirkulasi. Pada metode kedua, sejumlah kecil bijih bermutu tinggi yang ditumbuk halus diaduk di dalam tangki melalui udara atau dengan impeler mekanis. Kedua larutan tersebut dialirkan ke pengendapan setelah pelindian selesai.

Pelindian bertekanan mempersingkat waktu pengolahan dengan meningkatkan kelarutan padatan yang hanya larut dengan sangat lambat pada tekanan atmosfer. Untuk proses ini digunakan autoklaf, baik dalam gaya vertikal maupun horizontal. Setelah pelindian, larutan yang mengandung dipisahkan dari residu yang tidak larut dan dikirim ke pengendapan.

Pemulihan

Larutan hamil dari operasi pelindian diperlakukan dengan berbagai cara untuk mengendapkan nilai logam terlarut dan mendapatkannya kembali dalam bentuk padat. Hal ini meliputi pengendapan elektrolitik, transfer ion logam, pengendapan kimiawi, ekstraksi pelarut yang dikombinasikan dengan metode elektrolitik dan kimiawi, dan adsorpsi karbon yang dikombinasikan dengan pengolahan elektrolitik.

Deposisi elektrolitik, juga disebut electrowinning, menghasilkan produk yang murni dan merupakan metode yang lebih disukai. Namun, metode ini mahal, karena biaya listrik, dan harus memiliki larutan dengan kandungan logam yang tinggi. Anoda yang tidak larut, dan katoda yang terbuat dari bahan inert yang dapat dilucuti atau lembaran tipis logam yang diendapkan, dimasukkan ke dalam tangki yang berisi larutan pelindian. Ketika arus dialirkan, larutan akan terdisosiasi, dan ion-ion logam akan mengendap di katoda. Metode umum ini digunakan untuk tembaga, seng, nikel, dan kobalt.

Ekstraksi pelarut yang dikombinasikan dengan pengendapan elektrolitik mengambil larutan logam encer dan bernilai rendah dan memekatkannya ke dalam volume kecil dan kandungan logam yang tinggi, sehingga memuaskan untuk pengolahan elektrolitik. Bijih tembaga kadar rendah diproses dengan cara ini. Pertama, sejumlah besar larutan pelindian tembaga bernilai rendah (2,5 gram per liter, atau 0,33 ons per galon) dikontakkan dengan sejumlah kecil pelarut organik yang tidak dapat larut dalam air dalam minyak tanah. Nilai logam berpindah dari larutan pelindian ke dalam larutan ekstraksi, dua fase dipisahkan, dan larutan ekstraksi dilanjutkan ke sirkuit pengupasan. Di sini ditambahkan cairan lain yang memiliki afinitas yang lebih besar terhadap nilai logam, mengambilnya dari larutan ekstraksi. Kedua larutan dipisahkan, dengan volume kecil larutan pengupasan yang memiliki kandungan logam yang cukup tinggi (50 gram per liter, atau 6,6 ons per galon) agar sesuai untuk pengendapan elektrolitik.

Sirkuit adsorpsi digunakan untuk melucuti larutan sianida emas yang mengandung emas dengan karbon aktif. Karbon pada gilirannya dilucuti dari logam oleh larutan, yang kemudian masuk ke sel elektrolitik di mana kandungan emas disimpan di katoda.

Pengendapan kimiawi dapat dilakukan dengan beberapa cara. Dalam salah satu metode, reaksi perpindahan terjadi di mana logam yang lebih aktif menggantikan logam yang kurang aktif dalam larutan. Sebagai contoh, dalam sementasi tembaga, besi menggantikan ion tembaga dalam larutan, partikel padat tembaga mengendap sementara besi masuk ke dalam larutan. Ini adalah metode murah yang biasa diterapkan pada larutan pelindian yang lemah dan encer. Reaksi perpindahan lainnya menggunakan gas, dengan hidrogen sulfida, misalnya, ditambahkan ke dalam larutan yang mengandung nikel sulfat dan mengendapkan nikel sulfida. Terakhir, mengubah keasaman larutan merupakan metode pengendapan yang umum dilakukan. Yellow cake, nama umum untuk natrium diuranat, diendapkan dari larutan pelindian uranium pekat dengan menambahkan natrium hidroksida untuk menaikkan pH menjadi 7.

Disadur dari: https://www.britannica.com/

Selengkapnya
Metalurgi: Metalurgi Ekstraktif

Keinsinyuran

Pentingnya Kode Etik Insinyur dalam Meningkatkan Efisiensi dan Keselamatan Kerja di Bidang Teknik Sipil dan Lingkungan

Dipublikasikan oleh Admin pada 13 Februari 2025


Pendahuluan

Dalam beberapa tahun terakhir, perhatian terhadap peran dan penerapan kode etik insinyur di Indonesia semakin meningkat, terutama dalam bidang teknik sipil dan lingkungan. Peran kode etik tidak hanya sebagai panduan moral, tetapi juga mendukung keberhasilan proyek yang berfokus pada keselamatan, efisiensi, dan keberlanjutan lingkungan. Sebagai profesi yang memiliki dampak langsung pada masyarakat, insinyur bertanggung jawab untuk menegakkan standar etika guna menciptakan hasil kerja berkualitas tinggi yang aman dan berintegritas.

Kode Etik Insinyur: Pilar Utama Profesionalisme

Kode etik insinyur di Indonesia dikenal sebagai "Catur Karsa Sapta Dharma", yang mencakup empat prinsip utama dan tujuh pedoman perilaku. Kode ini mencerminkan tanggung jawab insinyur terhadap masyarakat, lingkungan, dan klien. Profesionalisme menjadi kunci yang tidak hanya mencakup keahlian teknis tetapi juga integritas dan tanggung jawab dalam pengambilan keputusan.

Penerapan Kode Etik: Studi Kasus

  1. Proyek Pembangunan: Implementasi kode etik dalam pembangunan infrastruktur memastikan penggunaan material berkualitas, desain yang aman, dan metode kerja yang sesuai standar. Contoh keberhasilan penerapan kode etik terlihat pada pembangunan stadion olahraga, di mana aspek K3 (Keselamatan dan Kesehatan Kerja) menjadi prioritas utama.

  2. Operasional dan Pemeliharaan: Proyek seperti Bendungan Jatibarang menunjukkan pentingnya kode etik dalam operasi yang melibatkan pengawasan ketat terhadap struktur bendungan untuk menghindari potensi risiko. Aspek seperti tanggung jawab, transparansi, dan kompetensi sangat ditekankan untuk memastikan keamanan masyarakat sekitar.

  3. Pengembangan Program Unggulan Daerah: Dalam konteks pengembangan produk unggulan daerah, kode etik membantu memastikan bahwa hasil yang dihasilkan tidak hanya berkualitas secara teknis tetapi juga bertanggung jawab terhadap lingkungan dan sosial. Insinyur dituntut untuk transparan, berintegritas, dan bekerja sesuai dengan kebutuhan lokal.

Faktor Pendukung Implementasi Kode Etik

Penerapan kode etik dipengaruhi oleh berbagai faktor internal dan eksternal. Faktor internal meliputi keterampilan teknis, kompetensi interpersonal, dan motivasi. Sementara faktor eksternal mencakup budaya organisasi, gaya kepemimpinan, lingkungan kerja, dan sistem kompensasi. Disiplin dan komunikasi yang baik juga memainkan peran penting dalam mendorong keberhasilan implementasi kode etik.

Pendidikan dan Sertifikasi: Pilar Pembentukan Insinyur Etis

Sertifikasi insinyur profesional di Indonesia menjadi instrumen penting untuk memastikan kompetensi dan integritas insinyur. Program pendidikan yang mengintegrasikan etika ke dalam kurikulum, seperti diskusi kasus, proyek capstone, dan pelatihan aktif, membantu membangun dasar etis bagi insinyur muda. Namun, masih diperlukan perbaikan dalam sistem sertifikasi untuk menyelaraskan dengan praktik terbaik internasional.

Kesimpulan

Penerapan kode etik insinyur merupakan komponen esensial untuk meningkatkan efisiensi dan keselamatan kerja dalam proyek teknik sipil dan lingkungan. Dengan fokus pada profesionalisme dan norma etika, insinyur dapat memberikan kontribusi signifikan terhadap keberlanjutan dan kesejahteraan masyarakat. Untuk itu, pendidikan dan pengembangan profesional harus terus ditingkatkan agar kode etik dapat diterapkan secara optimal.

Sumber: 

Handika, R. A., Istikhoratun, T., & Buchori, L. (2024). Kajian Peranan dan Penerapan Kode Etik Profesi Keinsinyuran dalam Praktik Pekerjaan Bidang Sipil dan Lingkungan di Indonesia untuk Meningkatkan Efisiensi dan Perlindungan Keselamatan Kerja. Jurnal Profesi Insinyur Indonesia, 2(3), 201-211. 

 

Selengkapnya
Pentingnya Kode Etik Insinyur dalam Meningkatkan Efisiensi dan Keselamatan Kerja di Bidang Teknik Sipil dan Lingkungan

Pertambangan dan Perminyakan

Menggali Peluang Karier untuk Ahli Geologi dalam Teknik Pertambangan

Dipublikasikan oleh Dewi Sulistiowati pada 13 Februari 2025


Untuk mencapai kesuksesan dalam industri pertambangan, para profesional dari berbagai latar belakang dan bidang studi berkolaborasi. Meskipun memiliki tanggung jawab yang berbeda, ahli geologi dan insinyur pertambangan sering kali berkolaborasi untuk memastikan ekstraksi mineral berharga secara efisien. Dapatkah seorang ahli geologi berfungsi sebagai insinyur pertambangan?

Sebelum kita dapat memahami prospek transisi ini, kita harus memeriksa perbedaan antara kedua profesi ini. Ahli geologi dengan latar belakang ilmu kebumian menyelidiki komposisi, struktur, dan proses bumi. Untuk memprediksi lokasi sumber daya yang berharga, mereka menganalisis formasi batuan, mengidentifikasi mineral, dan memahami peristiwa geologi. Namun, insinyur pertambangan bertanggung jawab untuk merancang, merencanakan, dan mengawasi operasi pertambangan. Mereka menilai kelayakan usaha pertambangan, membuat rencana ekstraksi, dan memastikan keamanan dan kemanjuran proses.

Peran ahli geologi dan insinyur pertambangan mungkin tampak berbeda pada pemeriksaan pertama. Namun, pekerjaan mereka sering kali tumpang tindih, karena keduanya berkontribusi pada eksplorasi, pengembangan, dan eksploitasi sumber daya. Pada tahap awal proyek pertambangan, mereka berkolaborasi untuk mengidentifikasi lokasi yang prospektif, mengevaluasi kelayakannya, dan menentukan teknik ekstraksi yang optimal. Selama operasi berlangsung, mereka terus memantau kondisi geologi lokasi dan menyesuaikan strategi ekstraksi yang sesuai.

Pendidikan dan pengalaman adalah kunci keberhasilan transisi dari geologi ke teknik pertambangan. Ahli geologi yang ingin menjadi insinyur pertambangan harus memiliki pengetahuan khusus tentang operasi pertambangan, desain tambang, dan peraturan keselamatan. Selain gelar geologi, mereka dapat mengejar gelar pascasarjana di bidang teknik pertambangan atau sertifikasi profesional, seperti lisensi Insinyur Profesional (PE).

Ahli geologi yang ingin mengejar bidang teknik pertambangan juga akan mendapatkan keuntungan dari pengalaman praktis. Pengalaman ini dapat diperoleh melalui magang, program kerja sama, atau posisi pertambangan tingkat pemula. Seiring dengan berkembangnya keahlian mereka dalam operasi pertambangan dan keterampilan teknik, mereka dapat secara progresif memikul lebih banyak tanggung jawab dan bekerja untuk menjadi insinyur pertambangan.

Dapatkah seorang Ahli Geologi melakukan tugas seorang Insinyur Pertambangan?

Seorang ahli geologi dapat menjadi insinyur pertambangan. Beberapa insinyur pertambangan berkolaborasi dengan ahli geologi untuk mengidentifikasi dan mengevaluasi deposit bijih baru. Meskipun insinyur pertambangan biasanya membutuhkan gelar sarjana di bidang teknik untuk memasuki bidang ini, beberapa dapat berkolaborasi dengan insinyur geosains untuk menyelidiki dan menemukan deposit mineral. Beberapa insinyur pertambangan berkolaborasi dengan ahli geologi untuk menemukan cadangan bijih baru, merancang peralatan pertambangan baru, dan mengawasi operasi pengolahan mineral.

Dalam beberapa tahun terakhir, industri pertambangan telah mengalami lonjakan permintaan mineral dan sumber daya penting untuk kemajuan teknologi dan energi terbarukan. Permintaan ini telah meningkatkan permintaan akan tenaga profesional dengan beragam keahlian yang dapat berkontribusi pada perluasan industri ini. Dengan pengetahuan mereka yang luas tentang komposisi dan proses bumi, para ahli geologi dapat berkontribusi secara signifikan terhadap operasi pertambangan.

Peluang untuk melanjutkan pendidikan dan pengembangan profesional juga dapat membantu para ahli geologi dalam transisi mereka ke bidang teknik pertambangan. Kursus singkat, lokakarya, dan seminar yang disediakan oleh organisasi seperti Society for Mining, Metallurgy, and Exploration (SME) dan American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME ) dapat membantu para ahli geologi dalam memperoleh keterampilan dan pengetahuan khusus.

Selain itu, berjejaring dengan para profesional industri dapat berguna untuk menemukan peluang kerja dan mentor. Ahli geologi dapat memperoleh wawasan tentang bidang teknik pertambangan dan memfasilitasi transisi karier mereka dengan menghadiri konferensi, bergabung dengan organisasi profesional, dan berinteraksi dengan para pakar industri.

Kolaborasi antara ahli geologi dan insinyur pertambangan diperlukan untuk ekstraksi sumber daya alam yang berkelanjutan. Memasukkan pengetahuan geologi ke dalam operasi pertambangan akan meningkatkan estimasi sumber daya, pemilihan lokasi, dan perencanaan ekstraksi, sehingga mengurangi dampak lingkungan dari kegiatan pertambangan. Para profesional dengan keahlian interdisipliner akan sangat dibutuhkan karena industri pertambangan menghadapi pengawasan yang semakin ketat terhadap jejak lingkungannya.

Beberapa kisah sukses menunjukkan potensi ahli geologi untuk beralih ke posisi di bidang teknik pertambangan. Individu-individu ini telah menggabungkan pengetahuan geologi dan teknik mereka untuk meningkatkan perencanaan tambang, mengoptimalkan ekstraksi sumber daya, dan berkontribusi pada adopsi praktik-praktik yang lebih berkelanjutan di industri ini.

Apa perbedaan ahli Geologi dengan Insinyur Pertambangan?

Perbedaan utama antara ahli geologi dan insinyur pertambangan terletak pada fokus dan tugas masing-masing. Ahli geologi meneliti struktur, komposisi, dan proses bumi untuk menemukan dan menilai endapan mineral. Selain itu, mereka mengevaluasi informasi geologi untuk menentukan kelayakan operasi pertambangan dan dampak lingkungan dari kegiatan pertambangan. Di sisi lain, insinyur pertambangan merancang dan membangun tambang untuk ekstraksi mineral yang aman dan efisien. Mereka berkolaborasi dengan ahli geologi untuk mengidentifikasi dan mengevaluasi sumber daya baru, merancang peralatan pertambangan baru, dan mengawasi operasi pengolahan mineral. Yang bertanggung jawab atas operasi tambang yang aman, ekonomis, dan bertanggung jawab terhadap lingkungan adalah para insinyur pertambangan. Ahli geologi lebih peduli dengan aspek geologi pertambangan, sedangkan insinyur pertambangan lebih peduli dengan aspek teknik dan operasional.

Keberhasilan transisi ahli geologi ke insinyur pertambangan dapat ditunjukkan lebih lanjut dengan menganalisis keterampilan dan pengetahuan khusus yang mereka bawa. Di antara kontribusi yang signifikan ini adalah:

Ahli geologi memiliki pemahaman yang kuat tentang formasi geologi, yang memungkinkan mereka untuk secara akurat memperkirakan kualitas dan kuantitas sumber daya di lokasi tertentu. Pengetahuan ini memungkinkan para insinyur pertambangan untuk membuat rencana ekstraksi berdasarkan data yang dapat diandalkan, memastikan pemanfaatan sumber daya yang efisien.

Dengan menganalisis data geologi dan mengevaluasi keberadaan mineral berharga, para ahli geologi memainkan peran penting dalam mengidentifikasi lokasi pertambangan yang prospektif. Keahlian mereka dalam menafsirkan data geofisika dan geokimia dapat membantu para insinyur pertambangan dalam mengambil keputusan pemilihan lokasi tambang yang tepat, sehingga mengurangi risiko operasi yang tidak efektif atau merusak lingkungan.

Perencanaan dan desain tambang: Pemahaman ahli geologi mengenai struktur geologi, mekanika batuan, dan hidrogeologi memengaruhi pemilihan metode ekstraksi dan kebutuhan infrastruktur. Masukan mereka membantu para insinyur pertambangan dalam mengembangkan rencana yang aman, efisien, dan hemat biaya.

Pengelolaan lingkungan: Pengetahuan ahli geologi yang mendalam tentang proses bumi dan sistem lingkungan dapat sangat membantu dalam mengurangi dampak negatif operasi pertambangan terhadap lingkungan. Dengan berkolaborasi dengan para insinyur pertambangan, para ahli geologi dapat membantu dalam merancang strategi untuk meminimalkan kontaminasi air, gangguan lahan, dan gangguan ekosistem, sehingga memastikan praktik pertambangan yang berkelanjutan.

Penilaian dan manajemen risiko: Ahli geologi dapat berkontribusi dalam penilaian dan manajemen risiko dengan mengidentifikasi potensi bahaya geologi seperti runtuhnya batu besar, tanah longsor, dan kontaminasi air tanah. Pengetahuan ini memungkinkan para insinyur pertambangan untuk menyusun langkah-langkah keselamatan dan rencana kontinjensi yang tepat, sehingga memastikan kesehatan pekerja dan lingkungan.

Inovasi dalam teknologi: Ahli geologi yang beralih ke teknik pertambangan dapat berkontribusi pada penciptaan teknologi dan teknik ekstraksi baru. Pengetahuan dan kemampuan interdisipliner mereka dapat menginspirasi solusi inovatif untuk tantangan industri pertambangan seperti meningkatkan produktivitas, mengurangi dampak lingkungan, dan meningkatkan keselamatan.

Apa tanggung jawab utama Ahli Geologi?

Ahli geologi meneliti struktur, komposisi, dan proses bumi untuk menemukan dan mengevaluasi endapan mineral. Ahli geologi mengumpulkan dan menganalisis data geologi, menyelidiki kerak bumi dan berbagai material, serta merencanakan inisiatif geologi. Ahli geologi menghabiskan sebagian besar waktunya di lapangan, tetapi mereka juga dapat melakukan penelitian di laboratorium, ruang kelas, dan kantor.

Keahlian dalam estimasi sumber daya, pemilihan lokasi, perencanaan tambang, manajemen lingkungan, penilaian risiko, dan inovasi teknologi adalah beberapa bidang di mana ahli geologi yang beralih ke peran teknik pertambangan dapat bersinar. Dengan berinvestasi pada pendidikan, pengalaman, dan peluang jaringan, para profesional ini dapat memberikan kontribusi yang signifikan terhadap industri pertambangan dan memastikan pertumbuhan dan keberlanjutan yang berkelanjutan. Jika mereka meluangkan waktu dan upaya untuk mendapatkan pengetahuan, pengalaman, dan koneksi profesional yang diperlukan, para ahli geologi dapat memperoleh pekerjaan sebagai insinyur pertambangan. Kombinasi unik antara pengetahuan geologi dan keterampilan teknik mereka dapat memberikan manfaat yang signifikan bagi industri pertambangan, menghasilkan operasi yang lebih efisien dan berkelanjutan. Karena permintaan sumber daya terus meningkat, ahli geologi yang beralih ke teknik pertambangan akan memainkan peran penting dalam menentukan masa depan industri ini.

Ahli geologi dapat menjadi insinyur pertambangan jika mereka memiliki latar belakang pendidikan dan pengalaman praktis yang sesuai. Keahlian yang beragam sangat menguntungkan bagi industri pertambangan karena mereka berkontribusi pada ekstraksi sumber daya berharga yang efisien dan berkelanjutan. Dengan pelatihan dan pengalaman yang sesuai, ahli geologi dengan dasar yang kuat dalam ilmu kebumian dapat memainkan peran penting dalam membentuk masa depan industri pertambangan.

Disadur dari: skillings.net

Selengkapnya
Menggali Peluang Karier untuk Ahli Geologi dalam Teknik Pertambangan
« First Previous page 886 of 1.176 Next Last »