Teknik Elektro

Pionir dan Pengembangan Sistem Citra Medis Optik

Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025


Britton Chance, seorang Ahli Kimia Fisika Amerika, memelopori pencitraan optik medis, yang menggunakan cahaya untuk berbagai keperluan medis. Bidang ini mencakup teknik seperti mikroskop optik, spektroskopi, endoskopi, pemindaian laser oftalmoskopi, pencitraan laser Doppler, dan tomografi koherensi optik. Teknik-teknik ini memanfaatkan cahaya, gelombang elektromagnetik, mirip dengan sinar-X, gelombang mikro, dan gelombang radio.

Sistem pencitraan optik dapat dikategorikan menjadi sistem pencitraan difusif dan balistik. Bonner dkk. mengembangkan model untuk migrasi foton dalam media biologis keruh, yang membantu dalam menafsirkan data dari monitor aliran darah laser Doppler dan dalam merancang protokol untuk eksitasi kromofor jaringan terapeutik.

Diffuse Optical Imaging (DOI)

Diffuse Optical Imaging (DOI) adalah metode pencitraan menggunakan spektroskopi dekat-inframerah (NIRS) atau metode berbasis fluoresensi. DOI digunakan untuk menciptakan model volumetrik 3D dari bahan yang diimajikan disebut tomografi optik difus, sedangkan metode pencitraan 2D diklasifikasikan sebagai topografi optik difus.

Teknik ini memiliki banyak aplikasi dalam neurosains, kedokteran olahraga, pemantauan luka, dan deteksi kanker. Biasanya teknik DOI memantau perubahan konsentrasi hemoglobin teroksigenasi dan deoksigenasi dan juga dapat mengukur status redoks sitokrom. Teknik ini juga dapat disebut sebagai tomografi optik difus (DOT), tomografi optik dekat-inframerah (NIROT), atau tomografi optik difusi fluoresensi (FDOT), tergantung pada penggunaannya.

Dalam neurosains, pengukuran fungsional yang dilakukan menggunakan panjang gelombang NIR, teknik DOI dapat diklasifikasikan sebagai spektroskopi dekat-inframerah fungsional (fNIRS).

Ballistic optical imaging (Foton Optik Ballistik)

Foton Optik Ballistik adalah foton cahaya yang menembus medium penyebaran (keruh) secara lurus. Jika pulsa laser dikirim melalui medium penyebaran seperti kabut atau jaringan tubuh, sebagian besar foton secara acak tersebar atau diserap. Namun, dalam jarak pendek, beberapa foton melewati medium penyebaran secara lurus. Foton koheren ini disebut foton ballistik. Foton yang sedikit tersebar, tetapi masih mempertahankan sebagian koherensinya, disebut sebagai foton ular.

Jika dideteksi dengan efisien, terdapat banyak aplikasi untuk foton ballistik terutama dalam sistem pencitraan medis resolusi tinggi koheren. Pemindai ballistik (menggunakan gerbang waktu ultra cepat) dan tomografi koherensi optik (OCT) (menggunakan prinsip interferometri) adalah dua dari banyak sistem pencitraan populer yang mengandalkan deteksi foton ballistik untuk membuat gambar yang terdifraksi terbatas. Keunggulan dibandingkan dengan modalitas pencitraan yang ada (misalnya, ultrasonografi dan pencitraan resonansi magnetik) adalah bahwa pencitraan ballistik dapat mencapai resolusi yang lebih tinggi dalam urutan 1 hingga 10 mikrometer, namun memiliki kedalaman pencitraan yang terbatas. Selain itu, foton 'kuasi-ballistik' yang lebih tersebar sering diukur juga untuk meningkatkan 'kekuatan' sinyal (yaitu, rasio sinyal terhadap noise).

Karena penurunan eksponensial (dengan jarak) foton ballistik dalam medium penyebaran, seringkali teknik pengolahan gambar diterapkan pada gambar ballistik yang ditangkap secara mentah, untuk merekonstruksi gambar berkualitas tinggi. Modalitas pencitraan ballistik bertujuan untuk menolak foton non-ballistik dan mempertahankan foton ballistik yang membawa informasi yang berguna. Untuk melakukan tugas ini, karakteristik khusus foton ballistik vs foton non-ballistik digunakan, seperti waktu terbang melalui pencitraan bergerbang koheren, kolimasi, propagasi gelombang, dan polarisasi.


Disadur dari: en.wikipedia.org

Selengkapnya
Pionir dan Pengembangan Sistem Citra Medis Optik

Teknik Elektro

Rekayasa Jaringan (Tissue Engineering): Memulihkan, Meningkatkan, dan Menginovasi Jaringan Biologis

Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025


Tissue engineering atau Rekayasa Jaringan merupakan suatu disiplin teknik biomedis yang menggunakan kombinasi sel, teknik rekayasa, metode material, dan faktor bio-kimia serta fisiko-kimia yang sesuai untuk memulihkan, menjaga, meningkatkan, atau menggantikan berbagai jenis jaringan biologis. Biasanya, tissue engineering melibatkan penggunaan sel yang ditempatkan pada kerangka jaringan dalam pembentukan jaringan baru yang dapat hidup untuk tujuan medis, tetapi tidak terbatas pada aplikasi yang melibatkan sel dan kerangka jaringan. Meskipun tissue engineering awalnya dikategorikan sebagai sub-bidang biomaterial, dengan berkembangnya cakupan dan pentingannya, kini dianggap sebagai bidang tersendiri.

Konsep dan cara kerja tissue engineering Meskipun sebagian besar definisi tissue engineering mencakup berbagai aplikasi, dalam praktiknya, istilah ini erat terkait dengan aplikasi yang memperbaiki atau menggantikan bagian atau seluruh jaringan (misalnya organ, tulang, kartilago, pembuluh darah, kandung kemih, kulit, otot, dll.). Seringkali, jaringan yang terlibat membutuhkan sifat mekanik dan struktural tertentu untuk fungsi yang tepat. Istilah ini juga telah diterapkan pada upaya untuk melakukan fungsi biokimia tertentu menggunakan sel-sel dalam sistem dukungan yang dibuat secara artifisial (misalnya pankreas buatan, atau hati buatan). Istilah regenerative medicine sering digunakan secara sinonim dengan tissue engineering, meskipun mereka yang terlibat dalam regenerative medicine menempatkan lebih banyak penekanan pada penggunaan sel punca atau sel-progenitor untuk menghasilkan jaringan.

Sejarah

  • Era Kuno (pra-abad ke-17)

Pemahaman yang sangat mendasar tentang kerja jaringan manusia mungkin telah ada jauh sebelum kebanyakan orang perkirakan. Sejak zaman Neolitikum, jahitan telah digunakan untuk menutup luka dan membantu dalam penyembuhan. Kemudian, masyarakat seperti Mesir kuno mengembangkan bahan yang lebih baik untuk menjahit luka seperti jahitan linen. Sekitar 2500 SM di India kuno, penanaman kulit dikembangkan dengan cara memotong kulit dari pantat dan menjahitnya ke bagian luka di telinga, hidung, atau bibir. Orang Mesir kuno sering kali akan menanam kulit dari mayat ke manusia hidup dan bahkan mencoba menggunakan madu sebagai jenis antibiotik dan lemak sebagai penghalang pelindung untuk mencegah infeksi. Pada abad ke-1 dan ke-2 Masehi, Gallo-Romawi mengembangkan implant besi tempa dan implan gigi bisa ditemukan pada Mayan kuno.

  • Pencerahan (abad ke-17 hingga abad ke-19)

Meskipun masyarakat kuno ini telah mengembangkan teknik yang jauh lebih maju dari zamannya, mereka masih kurang memahami secara mekanis bagaimana tubuh bereaksi terhadap prosedur-prosedur tersebut. Pendekatan mekanistik ini datang seiring dengan perkembangan metode empiris ilmu pengetahuan yang dipelopori oleh René Descartes. Sir Isaac Newton mulai menggambarkan tubuh sebagai "mesin fisikokimia" dan menduga bahwa penyakit adalah kerusakan dalam mesin tersebut.

Pada abad ke-17, Robert Hooke menemukan sel dan sebuah surat dari Benedict de Spinoza membawa gagasan tentang homeostasis antara proses-proses dinamis dalam tubuh. Percobaan Hydra yang dilakukan oleh Abraham Trembley pada abad ke-18 mulai menyelami kemampuan regeneratif sel. Selama abad ke-19, pemahaman yang lebih baik tentang bagaimana logam-logam yang berbeda bereaksi dengan tubuh menyebabkan pengembangan jahitan yang lebih baik dan pergeseran ke arah implan sekrup dan pelat dalam fiksasi tulang. Selanjutnya, pada pertengahan abad ke-19 pertama kali dihipotesiskan bahwa interaksi sel-lingkungan dan proliferasi sel sangat penting untuk regenerasi jaringan.

  • Era Modern (abad ke-20 dan abad ke-21)

Seiring berjalannya waktu dan kemajuan teknologi, ada kebutuhan konstan untuk perubahan dalam pendekatan yang diambil peneliti dalam studi mereka. Rekayasa jaringan terus berkembang selama berabad-abad. Pada awalnya, orang biasa melihat dan menggunakan sampel langsung dari mayat manusia atau hewan. Sekarang, para insinyur jaringan memiliki kemampuan untuk membuat banyak jaringan dalam tubuh melalui penggunaan teknik modern seperti mikrofabrikasi dan bioprinting tiga dimensi bersama dengan sel jaringan asli/sel punca. Kemajuan ini telah memungkinkan para peneliti untuk menghasilkan jaringan baru dengan cara yang jauh lebih efisien. Misalnya, teknik-teknik ini memungkinkan untuk lebih banyak personalisasi yang memungkinkan untuk biokompatibilitas yang lebih baik, penurunan respons kekebalan tubuh, integrasi seluler, dan umur panjang. Tidak diragukan lagi bahwa teknik-teknik ini akan terus berkembang, karena kita terus melihat mikrofabrikasi dan bioprinting berkembang selama dekade terakhir.

Pada tahun 1960, Wichterle dan Lim adalah yang pertama kali menerbitkan eksperimen pada hidrogel untuk aplikasi biomedis dengan menggunakan mereka dalam konstruksi lensa kontak. Pekerjaan di bidang ini berkembang lambat selama dua dekade berikutnya, tetapi kemudian menemukan dukungan ketika hidrogel digunakan ulang untuk pengiriman obat. Pada tahun 1984, Charles Hull mengembangkan bioprinting dengan mengubah printer inkjet Hewlett-Packard menjadi perangkat yang mampu mendepositkan sel dalam 2-D. Cetakan tiga dimensi (3-D) adalah jenis manufaktur tambahan yang sejak itu ditemukan berbagai aplikasi dalam rekayasa medis, karena presisi dan efisiensinya yang tinggi.

Dengan pengembangan oleh ahli biologi James Thompson dari garis sel punca manusia pertama pada tahun 1998 yang diikuti oleh transplantasi organ internal pertama yang dibuat di laboratorium pada tahun 1999 dan penciptaan bioprinter pertama pada tahun 2003 oleh Universitas Missouri ketika mereka mencetak sferoid tanpa perlu bahan penyangga, bioprinting 3-D menjadi lebih umum digunakan dalam bidang medis daripada sebelumnya. Sejauh ini, para ilmuwan telah berhasil mencetak organoid mini dan organ-on-chip yang memberikan wawasan praktis tentang fungsi tubuh manusia. Perusahaan farmasi menggunakan model-model ini untuk menguji obat sebelum beralih ke studi pada hewan. Namun, organ yang sepenuhnya fungsional dan struktural serupa belum pernah dicetak. Sebuah tim di University of Utah dilaporkan telah mencetak telinga dan berhasil mentransplantasikannya ke anak-anak yang lahir dengan cacat yang membuat telinga mereka sebagian tidak berkembang.

Hari ini, hidrogel dianggap sebagai pilihan utama bio-tinta untuk bioprinting 3-D karena mereka meniru Matriks Ekstraseluler (ECM) sel alami sambil juga memiliki sifat mekanik yang kuat yang mampu mendukung struktur 3-D. Selain itu, hidrogel bersama dengan bioprinting 3-D memungkinkan para peneliti untuk menghasilkan berbagai bahan penyangga.

Ringkasan Rekayasa Jaringan 

Rekayasa jaringan, seperti yang didefinisikan oleh tokoh-tokoh terkemuka di bidang ini seperti Langer dan Vacanti, mencakup pendekatan interdisipliner yang menggabungkan prinsip-prinsip dari ilmu teknik dan ilmu hayati untuk mengembangkan pengganti biologis yang bertujuan untuk memulihkan, mempertahankan, atau meningkatkan fungsi jaringan atau bahkan seluruh organ. Bidang ini melibatkan tiga metodologi utama: memanfaatkan sel, zat pemicu jaringan, atau kombinasi sel dan matriks yang dikenal sebagai perancah. Ide inti di balik rekayasa jaringan adalah memanfaatkan proses biologis alami untuk memajukan strategi terapeutik untuk penggantian, perbaikan, atau peningkatan jaringan. Kemajuan terbaru dalam biomaterial, sel punca, faktor pertumbuhan, dan lingkungan biomimetik telah membuka jalan untuk menciptakan atau memperbaiki jaringan di laboratorium. Namun, masih ada tantangan yang harus dihadapi, seperti mencapai fungsionalitas yang lebih besar, stabilitas biomekanik, dan vaskularisasi pada jaringan yang direkayasa yang ditujukan untuk transplantasi.

Istilah "rekayasa jaringan" telah berkembang dari waktu ke waktu, dengan asal-usulnya yang ditelusuri kembali ke publikasi tahun 1984 yang menggambarkan pembentukan membran yang menyerupai endotel pada prostesis mata sintetis. Baru pada tahun 1985, ketika Yuan-Cheng Fung, seorang peneliti dan ahli bioteknologi terkemuka, mengusulkan perpaduan antara "jaringan" dan "rekayasa" untuk melambangkan manipulasi jaringan, istilah ini mulai dikenal secara modern. Adopsi resmi istilah ini terjadi pada tahun 1987, menandai dimulainya secara resmi bidang ini.

Contoh Rekayasa Jaringan

Rekayasa jaringan, sebagaimana diuraikan oleh Langer dan Vacanti, mencakup berbagai contoh yang masuk ke dalam tiga kategori utama: "hanya sel," "sel dan perancah," atau "faktor pemicu jaringan."

  • Daging in vitro: Jaringan otot hewan yang dibudidayakan yang ditumbuhkan dalam lingkungan laboratorium.
  • Perangkat hati bioartifisial seperti "Hati Sementara" atau Extracorporeal Liver Assist Device (ELAD): Perangkat ini menggunakan garis sel hepatosit manusia dalam bioreaktor untuk meniru fungsi hati sementara, sehingga membantu dalam kasus gagal hati akut.
  • Pankreas buatan: Penelitian berfokus pada penggunaan sel pulau untuk mengatur kadar gula darah, khususnya pada kasus diabetes, yang berpotensi dicapai dengan menginduksi sel punca pluripoten manusia untuk berdiferensiasi menjadi sel beta yang memproduksi insulin.
  • Kandung kemih buatan: Keberhasilan implantasi konstruksi kandung kemih yang terbuat dari sel yang dikultur pada perancah ke dalam tubuh manusia, menawarkan alternatif yang potensial untuk transplantasi tradisional.
  • Perbaikan tulang rawan: Tulang rawan yang ditumbuhkan di laboratorium, dikultur di atas perancah, digunakan untuk transplantasi lutut autologus untuk memperbaiki tulang rawan yang rusak.
  • Tulang rawan tanpa perancah: Tulang rawan yang dihasilkan tanpa bahan perancah eksternal, dengan semua komponen yang diproduksi langsung oleh sel.
  • Jantung bioartifisial: Jantung tikus biokompatibel yang dibuat dengan cara merekellulasi jantung tikus yang telah didekelularisasi, yang menunjukkan potensi sebagai organ yang dapat ditransplantasikan.
  • Pembuluh darah hasil rekayasa jaringan: Pembuluh darah yang ditumbuhkan di laboratorium yang digunakan untuk memperbaiki pembuluh darah yang rusak tanpa memicu respons kekebalan tubuh, dengan menggunakan berbagai pendekatan seperti pembuluh darah yang telah disemai sebelumnya atau cangkok pembuluh darah aseluler.
  • Kulit buatan: Dibuat dari sel kulit manusia yang tertanam dalam hidrogel, berguna untuk perbaikan luka bakar, termasuk konstruksi cetak-bio.
  • Sumsum tulang buatan: Sumsum tulang yang dikultur secara in vitro untuk tujuan transplantasi, dengan menggunakan pendekatan "hanya sel" untuk rekayasa jaringan.
  • Tulang hasil rekayasa jaringan: Memanfaatkan matriks struktural yang terdiri dari logam, polimer, atau keramik untuk merekrut osteoblas dan mempercepat proses pembentukan tulang.
  • Penis yang ditumbuhkan di laboratorium: Penis kelinci yang didekelularisasi dan direkelularisasi dengan otot polos dan sel endotel, yang menunjukkan harapan dalam mengobati trauma genital.
  • Rekayasa jaringan mukosa mulut: Memanfaatkan sel dan perancah untuk mereplikasi struktur dan fungsi mukosa mulut secara tiga dimensi.

 

Disadur dari:  en.wikipedia.org

Selengkapnya
Rekayasa Jaringan (Tissue Engineering): Memulihkan, Meningkatkan, dan Menginovasi Jaringan Biologis

Teknik Elektro

Pengenalan dan Perkembangan Rekayasa Genetik

Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025


Rekayasa genetik, juga dikenal sebagai modifikasi genetik, adalah proses manipulasi langsung gen suatu organisme menggunakan bioteknologi. Teknologi ini melibatkan berbagai metode untuk mengubah susunan genetik sel, termasuk transfer gen antar spesies untuk menciptakan organisme yang dioptimalkan. DNA baru diperoleh melalui isolasi dan duplikasi materi genetik dari induk menggunakan DNA rekombinan atau sintesis DNA buatan. Vektor digunakan untuk mengintegrasikan DNA ini ke dalam organisme inang. Organisme yang dihasilkan melalui rekayasa genetik disebut sebagai organisme yang dimodifikasi secara genetik (GMO).

Organisme transgenik pertama diciptakan pada tahun 1973 oleh Herbert Boyer dan Stanley Cohen, sementara hewan transgenik pertama diciptakan oleh Rudolf Jaenisch pada tahun 1974. Genentech, perusahaan pertama yang berfokus pada rekayasa genetik, didirikan pada tahun 1976 dan memulai produksi protein manusia. Insulin manusia pertama dari rekayasa genetik diproduksi pada tahun 1978 dan bakteri yang menghasilkan insulin dikomersialisasikan pada tahun 1982. Pengenalan makanan rekayasa genetik dimulai pada tahun 1994 dengan tomat Flavr Savr, yang dimodifikasi untuk umur simpan yang lebih lama.

Rekayasa genetik telah diterapkan dalam berbagai bidang, termasuk penelitian, obat-obatan, bioteknologi industri, dan pertanian. Meskipun memberikan manfaat ekonomi kepada petani, rekayasa genetik juga memicu kontroversi sejak awal, terutama seputar keamanan pangan dan dampak lingkungan. Perdebatan terkait aliran gen, dampak pada organisme non-target, dan masalah hak kekayaan intelektual masih berlanjut. Berbagai kerangka regulasi telah dikembangkan oleh negara-negara, termasuk perjanjian internasional seperti Protokol Cartagena tentang Keamanan Hayati yang disepakati pada tahun 2000. Perbedaan pendekatan regulasi antara Amerika Serikat dan Eropa menunjukkan kompleksitas dalam mengatur teknologi rekayasa genetik.

Ikhtisar Rekayasa Genetik

Rekayasa genetik adalah proses manipulasi susunan genetik suatu organisme dengan menghapus atau menyisipkan DNA. Berbeda dengan pemuliaan tradisional, yang melibatkan persilangan dan seleksi organisme dengan fenotip tertentu, rekayasa genetik langsung mengambil gen dari satu organisme dan memasukkannya ke organisme lain. Ini memungkinkan proses yang lebih cepat dan dapat menambahkan gen dari berbagai sumber tanpa menambahkan gen yang tidak diinginkan.

Potensi rekayasa genetik meliputi perbaikan kelainan genetik pada manusia dengan mengganti gen yang rusak dengan yang baik. Ini juga menjadi alat penting dalam penelitian, memungkinkan peneliti untuk mempelajari fungsi spesifik gen. Tanaman transgenik saat ini membantu meningkatkan ketahanan pangan dengan hasil yang lebih baik, nilai gizi yang lebih tinggi, dan toleransi terhadap tekanan lingkungan.

Proses rekayasa genetik melibatkan penyisipan DNA langsung ke organisme inang atau sel, baik melalui vektor atau metode seperti mikro-injeksi atau mikro-enkapsulasi. Rekayasa genetik tidak termasuk peranakan tradisional, tetapi dapat digunakan bersamaan dengan teknik seperti kloning dan sel induk. Organisme hasil rekayasa genetik dapat disebut transgenik jika mengandung materi genetik dari spesies lain, atau cisgenesis jika materi genetik dari spesies yang sama atau dapat berkembang biak secara alami dengan inang.

Di beberapa wilayah, seperti Eropa, modifikasi genetik adalah sinonim dengan rekayasa genetik, sementara di Amerika Serikat dan Kanada, istilah ini juga dapat merujuk pada metode pengembangbiakan konvensional.

Sejarah Rekayasa Genetik

Selama ribuan tahun, manusia telah memanipulasi genom spesies lain melalui pembiakan selektif, berlawanan dengan seleksi alam. Baru-baru ini, pembiakan mutasi menggunakan bahan kimia atau radiasi untuk menciptakan mutasi acak dengan tujuan pembiakan selektif. Rekayasa genetik, sebagai manipulasi langsung DNA oleh manusia, baru muncul sejak 1970-an.

Pada tahun 1972, Paul Berg menciptakan molekul DNA rekombinan pertama dengan menggabungkan DNA dari virus monyet SV40 dengan virus lambda. Kemudian, pada tahun 1973, Herbert Boyer dan Stanley Cohen menciptakan organisme transgenik pertama dengan memasukkan gen resistensi antibiotik ke dalam plasmid bakteri Escherichia coli. Tahun berikutnya, Rudolf Jaenisch menciptakan tikus transgenik pertama di dunia dengan memasukkan DNA asing ke dalam embrio.

Pencapaian-pencapaian ini menimbulkan kekhawatiran di kalangan ilmiah tentang risiko rekayasa genetik, yang kemudian mendapat perhatian dalam Konferensi Asilomar pada 1975. Genentech, perusahaan rekayasa genetik pertama, didirikan pada tahun 1976, dan pada tahun 1980, Mahkamah Agung AS memutuskan bahwa kehidupan yang dimodifikasi secara genetis dapat dipatenkan.

Perkembangan lebih lanjut terjadi pada tahun 1983, ketika sebuah perusahaan bioteknologi, Advanced Genetic Sciences (AGS), mengajukan permohonan otorisasi pemerintah AS untuk melakukan tes lapangan dengan galur minus-es Pseudomonas syringae. Namun, uji lapangan ditunda selama empat tahun karena tantangan hukum. Pada tahun 1987, minus-es P. syringae menjadi organisme yang dimodifikasi secara genetik pertama yang dilepaskan ke lingkungan.

Percobaan pertama tanaman rekayasa genetik dilakukan pada tahun 1986 di Perancis dan AS, dengan tanaman tembakau yang direkayasa untuk menjadi tahan terhadap herbisida. Tiongkok menjadi negara pertama yang mengkomersialisasikan tanaman transgenik pada tahun 1992. Makanan rekayasa genetik pertama, Flavr Savr, tomat yang tahan lama, disetujui untuk komersialisasi pada tahun 1994. Pada tahun yang sama, Uni Eropa menyetujui tembakau rekayasa genetik yang tahan terhadap herbisida.

Pada tahun 2010, genom sintetis pertama diciptakan oleh para ilmuwan di J. Craig Venter Institute, dan diintegrasikan ke dalam sel bakteri kosong. Empat tahun kemudian, bakteri dikembangkan yang menggunakan alfabet genetik yang diperluas.

Pada tahun 2012, Jennifer Doudna dan Emmanuelle Charpentier mengembangkan sistem CRISPR/Cas9, teknik yang memungkinkan pengeditan genom yang mudah dan spesifik pada hampir semua organisme.

Penerapan Rekayasa Genetik dalam Pemuliaan Tanaman

Rekayasa genetik telah menjadi alat yang berharga dalam menghasilkan benih tanaman yang tahan terhadap penyakit. Dalam praktiknya, gen yang memiliki kekebalan terhadap penyakit tertentu disisipkan ke dalam genom tanaman. Proses ini umumnya dilakukan selama perlakuan dan pencucian benih. Bioteknologi hutan juga memanfaatkan rekayasa genetik dalam pemuliaan tanaman hutan melalui teknologi gen dan analisis genom.

Penerapan rekayasa genetik pada tanaman hutan, seperti poplar, betula, cemara, dan eukaliptus, dilakukan untuk mengubah sifat-sifat seperti lignin dan selulosa guna meningkatkan ketahanan terhadap hama penyakit serta meningkatkan fertilitas dan toleransi terhadap ancaman abiotik. Pengujian pemuliaan tanaman hutan dilakukan di berbagai lingkungan, termasuk laboratorium, rumah kaca, dan hutan.

Selain di bidang hutan, rekayasa genetik juga digunakan dalam bioenergi untuk tujuan komersial. Dengan demikian, rekayasa genetik memberikan kontribusi yang signifikan dalam memperbaiki sifat-sifat tanaman untuk meningkatkan hasil dan ketahanan dalam berbagai lingkungan pertanian dan hutan.


Disadur dari: en.wikipedia.org

Selengkapnya
Pengenalan dan Perkembangan Rekayasa Genetik

Teknik Elektro

Daya Listrik: Definisi, Penggunaan, dan Pengukuran

Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025


Daya listrik adalah laju transfer energi listrik dalam suatu rangkaian. Satuan SI-nya adalah watt, satuan umum daya, yang didefinisikan sebagai satu joule per detik. Awalan standar berlaku untuk watt seperti pada satuan SI lainnya: ribuan, jutaan, dan miliaran watt masing-masing disebut kilowatt, megawatt, dan gigawatt.

Dalam bahasa umum, tenaga listrik adalah produksi dan pengiriman energi listrik, sebuah utilitas publik yang penting di sebagian besar dunia. Tenaga listrik biasanya dihasilkan oleh generator listrik, tetapi juga dapat dipasok oleh sumber-sumber seperti baterai listrik. Tenaga listrik biasanya disalurkan ke bisnis dan rumah (sebagai listrik rumah tangga) oleh industri tenaga listrik melalui jaringan listrik. Tenaga listrik dapat dikirim dalam jarak jauh melalui saluran transmisi dan digunakan untuk aplikasi seperti gerakan, cahaya, atau panas dengan efisiensi tinggi. 

Definisi

Daya listrik, seperti halnya daya mekanik, adalah laju kerja yang diukur dalam watt, dan diwakili oleh huruf P. Istilah watt digunakan dalam bahasa sehari-hari yang berarti “daya listrik dalam watt”. Daya listrik dalam watt yang dihasilkan oleh arus listrik I yang terdiri dari muatan sebesar Q coulomb setiap t detik yang melewati perbedaan potensial listrik (tegangan) sebesar V adalah:

{\displaystyle {\text{Work done per unit time}}=\wp ={\frac {W}{t}}={\frac {W}{Q}}{\frac {Q}{t}}=VI}

Di mana:

  • W adalah usaha dalam joule
  • t adalah waktu dalam hitungan detik
  • Q adalah muatan listrik dalam coulomb
  • V adalah potensial listrik atau tegangan dalam volt
  • I adalah arus listrik dalam satuan ampere

Penjelasan Energi Listrik

Energi listrik telah menjadi bagian yang tak terpisahkan dari kehidupan modern kita. Namun, tahukah Anda bagaimana energi ini benar-benar bekerja? Mari kita jelajahi dunia listrik ini bersama-sama, mulai dari sirkuit sederhana hingga konsep yang lebih kompleks tentang medan elektromagnetik.

Dalam sebuah sirkuit listrik, ada dua jenis komponen utama: sumber daya aktif dan beban pasif. Sumber daya aktif, seperti generator dan baterai, mengonversikan bentuk energi lain, seperti mekanik atau kimia, menjadi energi listrik. Sementara beban pasif, seperti bola lampu atau motor listrik, mengonsumsi energi listrik dan mengubahnya menjadi bentuk energi lain, seperti cahaya atau gerakan.

Untuk sirkuit AC, kita dapat membagi daya listrik menjadi tiga komponen: daya nyata, daya reaktif, dan daya semu. Daya nyata adalah daya yang benar-benar ditransfer dan digunakan, sementara daya reaktif hanya bergerak bolak-balik antara sumber dan beban. Daya semu adalah kombinasi keduanya, dan dapat divisualisasikan sebagai segitiga daya yang menggambarkan hubungan antara ketiga komponen tersebut.

Namun, energi listrik tidak hanya terbatas pada sirkuit. Ia juga termanifestasi dalam bentuk medan elektromagnetik yang terjadi di mana pun ada perubahan medan listrik dan medan magnet secara bersamaan. Aliran energi ini dapat dihitung dengan mengintegralkan vektor Poynting di seluruh permukaan tertutup. Pemahaman tentang medan elektromagnetik ini memiliki implikasi besar dalam berbagai bidang seperti komunikasi nirkabel, pemanfaaran energi, dan bahkan dunia medis.

Produksi

Prinsip-prinsip dasar dari sebagian besar pembangkit listrik ditemukan pada tahun 1820-an dan awal 1830-an oleh ilmuwan Inggris, Michael Faraday. Metode dasarnya masih digunakan sampai sekarang: arus listrik dihasilkan oleh pergerakan lingkaran kawat, atau cakram tembaga di antara kutub magnet.

Bagi perusahaan listrik, ini adalah proses pertama dalam pengiriman listrik ke konsumen. Proses lainnya, transmisi listrik, distribusi, dan penyimpanan dan pemulihan energi listrik menggunakan metode penyimpanan yang dipompa biasanya dilakukan oleh industri tenaga listrik.

Listrik sebagian besar dihasilkan di pembangkit listrik oleh generator elektromekanis, yang digerakkan oleh mesin panas yang dipanaskan oleh pembakaran, tenaga panas bumi, atau fisi nuklir. Generator lainnya digerakkan oleh energi kinetik air dan angin yang mengalir. Ada banyak teknologi lain yang digunakan untuk menghasilkan listrik seperti panel surya fotovoltaik.

Alat Ukur

Alat yang digunakan untuk mengukur daya listrik disebut wattmeter, yang bekerja berdasarkan prinsip kerja amperemeter, voltmeter, dan gaya Lorentz. Wattmeter terdiri dari kumparan arus dan kumparan tegangan, yang dapat digunakan untuk mengukur tegangan dan arus baik searah maupun bolak-balik.

Penerapan Tenaga Listrik

Tenaga listrik, yang diproduksi dari stasiun pembangkit pusat dan didistribusikan melalui jaringan transmisi listrik, digunakan secara luas dalam aplikasi industri, komersial, dan konsumen. Konsumsi daya listrik per kapita suatu negara berkorelasi dengan perkembangan industrinya. Motor listrik menggerakkan mesin-mesin manufaktur dan menggerakkan kereta bawah tanah dan kereta api. Pencahayaan listrik adalah bentuk cahaya buatan yang paling penting. Energi listrik digunakan secara langsung dalam proses-proses seperti ekstraksi aluminium dari bijihnya dan dalam produksi baja dalam tungku busur listrik. Tenaga listrik yang andal sangat penting untuk telekomunikasi dan penyiaran. Tenaga listrik digunakan untuk menyediakan pendingin ruangan di iklim panas, dan di beberapa tempat, tenaga listrik merupakan sumber energi yang kompetitif secara ekonomi untuk pemanas ruangan gedung. Penggunaan tenaga listrik untuk memompa air berkisar dari sumur rumah tangga hingga proyek irigasi dan penyimpanan energi.

 

Disadur dari: en.wikipedia.org

 

Selengkapnya
Daya Listrik: Definisi, Penggunaan, dan Pengukuran

Teknik Fisika

Instrumentasi: Ilmu Perangkat Pengukuran

Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025


Instrumentasi mencakup berbagai macam alat ukur yang digunakan untuk menunjukkan, mengukur, dan mencatat kuantitas fisik. Ini merupakan bidang studi yang mempelajari seni dan ilmu pengetahuan dalam membuat instrumen pengukuran, yang mencakup disiplin ilmu seperti metrologi, otomasi, dan teori kontrol. Istilah "instrumentasi" berakar dari keahlian dan prinsip-prinsip ilmiah di balik pembuatan instrumen ilmiah.

Bidang ini mencakup spektrum perangkat, mulai dari termometer pembacaan langsung hingga komponen multi-sensor yang rumit yang terintegrasi ke dalam sistem kontrol industri. Instrumen ini dapat ditemukan di berbagai tempat, termasuk laboratorium, kilang minyak, pabrik, kendaraan, dan bahkan pada barang rumah tangga biasa seperti detektor asap dan termostat.

Berbagai Parameter Pengukuran:

  • Tekanan: Ini dapat berupa tekanan diferensial atau statis dan sangat penting untuk berbagai aplikasi yang memerlukan pemantauan tekanan.
  • Aliran: Pengukuran laju aliran fluida, yang sangat penting dalam industri seperti manufaktur dan utilitas.
  • Suhu: Memantau tingkat suhu secara akurat sangat penting untuk mengendalikan proses dan memastikan kualitas produk.
  • Tingkat Cairan: Mengukur tingkat cairan dalam tangki atau wadah diperlukan untuk manajemen inventaris dan pengendalian proses.
  • Kelembapan/Kelembaban: Menentukan kadar air atau tingkat kelembapan di udara penting dalam industri seperti pertanian, farmasi, dan sistem HVAC.
  • Massa jenis: Pengukuran massa jenis sangat penting dalam industri seperti minyak dan gas, di mana massa jenis fluida menentukan sifat-sifatnya.
  • Viskositas: Pemantauan viskositas sangat penting dalam industri seperti pengolahan makanan dan otomotif, dimana konsistensi cairan sangat penting.
  • Radiasi Pengion: Mendeteksi dan mengukur tingkat radiasi pengion sangat penting untuk memastikan keselamatan di lingkungan di mana paparan radiasi menjadi perhatian.
  • Frekuensi: Mengukur frekuensi penting dalam berbagai aplikasi, termasuk telekomunikasi dan elektronik.
  • Arus: Pemantauan aliran arus listrik merupakan hal mendasar dalam sistem kelistrikan dan distribusi daya.
  • Tegangan: Pengukuran tingkat tegangan membantu memastikan berfungsinya sirkuit dan peralatan listrik.
  • Induktansi: Mengukur induktansi sangat penting dalam elektronik dan teknik elektro untuk merancang dan menganalisis rangkaian.
  • Kapasitansi: Pemantauan kapasitansi sangat penting dalam sirkuit dan sistem elektronik untuk menyimpan energi listrik.
  • Resistivitas: Pengukuran resistivitas penting dalam ilmu material dan teknik elektro untuk memahami konduktivitas material.
  • Komposisi Kimia: Menentukan komposisi kimia suatu zat sangat penting dalam berbagai industri, termasuk farmasi, manufaktur, dan pemantauan lingkungan.
  • Sifat Kimia: Mengukur sifat kimia seperti pH, keasaman, dan alkalinitas sangat penting dalam industri seperti pengolahan air, pengolahan makanan, dan manufaktur bahan kimia.
  • Gas Beracun: Mendeteksi dan mengukur tingkat gas beracun sangat penting untuk memastikan keselamatan tempat kerja dan perlindungan lingkungan.
  • Posisi: Posisi pemantauan penting dalam industri seperti otomotif, dirgantara, dan robotika untuk navigasi dan kontrol.
  • Getaran: Mengukur tingkat getaran sangat penting dalam industri seperti manufaktur dan transportasi untuk mendeteksi kesalahan peralatan dan memastikan kelancaran pengoperasian.
  • Berat: Pemantauan berat atau massa sangat penting dalam industri seperti logistik, pertanian, dan manufaktur untuk manajemen inventaris dan pengendalian kualitas.

Evolusi Teknik Instrumentasi dan Kontrol

  • Asal Usul Pra-Industri

Akar instrumentasi industri berasal dari zaman kuno, di mana alat ukur dasar seperti timbangan dan penunjuk digunakan. Pengukuran awal terutama terfokus pada waktu, dibuktikan dengan penemuan seperti jam air yang ditemukan di makam firaun Mesir kuno. Pada tahun 270 SM, perangkat sistem kendali otomatis yang belum sempurna mulai bermunculan, menunjukkan kemajuan awal di bidang ini.

  • Era Industri Awal

Pada tahun 1663, Christopher Wren mengusulkan desain "jam cuaca" kepada Royal Society, menandai langkah signifikan dalam instrumentasi meteorologi. Namun, dibutuhkan waktu hampir dua abad sebelum perangkat tersebut menjadi standar dalam meteorologi. Integrasi pemancar pneumatik dan pengontrol otomatis pada awal tahun 1930an merevolusi instrumentasi industri, memungkinkan kontrol dan indikasi yang lebih tepat dalam proses manufaktur.

  • Transisi ke Instrumen Elektronik

Munculnya elektronik transistor pada pertengahan abad ke-20 membuka jalan bagi kemajuan signifikan dalam instrumentasi. Perangkat berbasis transistor menggantikan sistem pneumatik, menawarkan akurasi dan keandalan yang lebih baik. Upaya standardisasi menghasilkan pembentukan sinyal instrumentasi umum seperti rentang 4–20 mA, menyederhanakan komunikasi dan mengurangi biaya pemeliharaan.

  • Otomatisasi dan Kontrol Proses

Seiring kemajuan teknologi, pengontrol pneumatik digantikan oleh sistem kontrol yang lebih canggih, sehingga mengurangi kebutuhan akan intervensi manual dalam proses industri. Ruang kontrol terpusat memungkinkan operator memantau dan menyesuaikan proses dari jarak jauh, sehingga meningkatkan efisiensi dan keselamatan. Pengenalan sistem kontrol terdistribusi (DCS) dan sistem kontrol pengawasan dan akuisisi data (SCADA) semakin mengoptimalkan operasi pabrik, sehingga memudahkan interkoneksi dan konfigurasi ulang kontrol.

  • Penerapan di Berbagai Sektor

Instrumentasi dapat diterapkan di berbagai sektor, mulai dari peralatan rumah tangga hingga industri otomotif dan dirgantara. Di rumah tangga, sistem instrumentasi mengatur suhu, memantau keamanan, dan mengontrol peralatan dapur. Pada kendaraan otomotif, instrumentasi kompleks memberikan informasi penting kepada pengemudi dan memastikan kinerja optimal. Demikian pula, pesawat modern mengandalkan instrumentasi canggih untuk navigasi, pemantauan, dan keselamatan.

  • Instrumentasi Laboratorium

Dalam lingkungan laboratorium, instrumentasi mencakup berbagai peralatan uji yang dikendalikan oleh komputer. Instrumen ini sangat penting untuk mengukur besaran listrik dan kimia, memudahkan penelitian dan analisis di berbagai bidang.

  • Kesimpulan

Dari awal yang sederhana hingga kecanggihannya saat ini, teknik instrumentasi dan kontrol telah memainkan peran penting dalam memajukan teknologi dan meningkatkan proses industri. Seiring dengan terus berkembangnya teknologi, bidang ini pasti akan mengalami transformasi lebih lanjut, membentuk masa depan sistem otomasi dan kontrol.

Memahami Rekayasa Instrumentasi: Meningkatkan Kinerja dan Keandalan Sistem

Rekayasa instrumentasi berada di garis depan dalam merancang dan mengimplementasikan instrumen pengukuran yang penting untuk sistem otomatis di berbagai bidang, termasuk bidang kelistrikan dan pneumatik. Insinyur dalam spesialisasi ini terutama berfokus pada pengoptimalan produktivitas, keandalan, keamanan, dan stabilitas sistem di industri dengan proses otomatis seperti pabrik kimia atau manufaktur.

Peran insinyur instrumentasi sangat bervariasi tergantung pada domain spesifik tempat mereka beroperasi. Misalnya, seorang ahli instrumentasi biomedis untuk tikus laboratorium memiliki prioritas yang sangat berbeda dibandingkan dengan spesialis instrumentasi roket. Namun, keduanya memiliki perhatian yang sama seperti memilih sensor yang sesuai berdasarkan faktor-faktor seperti ukuran, biaya, akurasi, dan daya tahan lingkungan.

Salah satu tugas penting insinyur instrumentasi adalah mengintegrasikan sensor dengan sistem perekaman, transmisi, tampilan, atau kontrol. Hal ini melibatkan perancangan dan pembuatan diagram pemipaan dan instrumentasi untuk proses, menentukan persyaratan pemasangan dan pengkabelan, serta memastikan pengkondisian sinyal yang tepat. Selain itu, mereka juga mengawasi komisioning, kalibrasi, pengujian, dan pemeliharaan sistem instrumentasi.

Dalam lingkungan penelitian, ahli materi pelajaran sering kali memiliki keahlian yang signifikan dalam sistem instrumentasi. Sebagai contoh, astronom tidak hanya memahami seluk-beluk teleskop, tetapi juga memiliki pengetahuan yang mendalam tentang prosedur operasional untuk mengoptimalkan hasil. Mereka juga berpengalaman dalam teknik untuk mengurangi faktor-faktor seperti gradien suhu yang dapat mempengaruhi kinerja teleskop.

Selain insinyur, ahli teknik instrumentasi, teknisi, dan mekanik memainkan peran penting dalam memecahkan masalah, memperbaiki, dan memelihara instrumen dan sistem instrumentasi, untuk memastikan keberlangsungan fungsinya. Rekayasa instrumentasi adalah bidang dinamis yang terus berkembang seiring dengan kemajuan teknologi, memainkan peran penting dalam meningkatkan efisiensi, keandalan, dan keamanan sistem otomatis di berbagai industri.
 

Disadur dari: en.wikipedia.org 

Selengkapnya
Instrumentasi: Ilmu Perangkat Pengukuran

Teknik Elektro

Peran Penting Listrik: Memahami Pentingnya dalam Kehidupan Kita

Dipublikasikan oleh Sirattul Istid'raj pada 27 Februari 2025


Listrik adalah fenomena fisika yang melibatkan kehadiran dan pergerakan muatan listrik. Berbagai efek listrik yang umum dikenal meliputi petir, listrik statis, induksi elektromagnetik, dan arus listrik. Listrik juga dapat menghasilkan dan menerima radiasi elektromagnetik seperti gelombang radio.

Dalam konteks listrik, muatan menghasilkan medan elektromagnetik yang memengaruhi muatan lainnya. Fenomena listrik melibatkan beberapa konsep fisika, termasuk muatan listrik, medan listrik, potensial listrik, arus listrik, dan elektromagnetisme. Dalam bidang teknik elektro, listrik digunakan untuk menyediakan tenaga listrik yang diperlukan untuk mengoperasikan peralatan dan untuk mengatur sirkuit listrik yang melibatkan komponen-komponen seperti tabung vakum, transistor, dioda, dan sirkuit terintegrasi.

Meskipun pemahaman teoritis tentang listrik berkembang perlahan pada abad ke-17 dan ke-18, penerapan praktisnya baru mulai signifikan pada akhir abad ke-19. Perkembangan teknologi listrik yang pesat telah mengubah berbagai industri dan kehidupan sehari-hari. Fleksibilitas listrik yang besar memungkinkan penggunaannya dalam berbagai bidang seperti transportasi, pemanasan, penerangan, telekomunikasi, dan komputasi. Sebagai tulang punggung masyarakat industri modern, tenaga listrik memiliki peran penting yang tak tergantikan.

Sejarah singkat listrik

Sebelum pengetahuan tentang listrik berkembang, orang zaman dulu mengamati ikan listrik dengan takut. Mereka, seperti penduduk Mesir Kuno, menganggap ikan listrik sebagai "pelindung" dari ikan lainnya. Pengamatan tentang efek mati rasa sengatan listrik dari ikan ini telah dilakukan sejak zaman kuno oleh berbagai budaya, seperti Yunani Kuno dan Kekaisaran Romawi. Beberapa penulis kuno, termasuk Plinius yang Tua dan Scribonius Largus, telah mencatat efek ini. Kemungkinan pendekatan awal terhadap penemuan listrik berasal dari orang-orang Arab, yang telah memiliki kata berbahasa Arab untuk petir sebelum abad ke-15.

Beberapa budaya kuno di sekitar Mediterania mengetahui bahwa benda seperti batang ambar dapat digosok dengan bulu kucing untuk menarik benda ringan. Pada tahun 600 SM, Thales mengamati fenomena listrik statis, meskipun pada saat itu dia belum sepenuhnya memahami hubungan antara listrik dan magnetisme. William Gilbert dari Inggris membedakan efek lodestone dari listrik statis pada tahun 1600, dan dia menggunakan istilah "electricus" untuk merujuk pada sifat menarik benda ringan setelah digosok.

Pada abad ke-18, ilmuwan seperti Otto von Guericke, Robert Boyle, Stephen Gray, dan C. F. du Fay terus melakukan penelitian tentang listrik. Pada pertengahan abad ke-18, Benjamin Franklin berhasil menunjukkan bahwa kilat adalah bentuk listrik di alam. Pada tahun 1791, Luigi Galvani menemukan bahwa listrik memainkan peran penting dalam komunikasi antara sel saraf dan otot. Alessandro Volta menciptakan tumpukan volta pada tahun 1800, yang memberikan sumber energi listrik yang lebih dapat diandalkan daripada mesin elektrostatis sebelumnya.

Pada abad ke-19, penemuan-penemuan seperti motor listrik oleh Michael Faraday, analisis matematis sirkuit listrik oleh Georg Ohm, dan konsep elektromagnetisme oleh Hans Christian Ørsted dan André-Marie Ampère menandai perkembangan cepat dalam ilmu kelistrikan. Penemuan baterai oleh Alessandro Volta juga memainkan peran penting dalam memperluas pemahaman tentang listrik.

Pada awal abad ke-20, perkembangan kelistrikan semakin pesat, dengan penemuan-penemuan seperti efek fotolistrik oleh Albert Einstein dan penemuan transistor pada tahun 1947. Ini membuka jalan bagi pengembangan teknologi komponen padat seperti chip mikroprosesor dan solid-state drive yang digunakan pada perangkat elektronik modern.

Konsep listrik

Muatan listrik:

Muatan listrik menghasilkan gaya elektrostatis, yang telah dikenal sejak zaman kuno. Fenomena ini diamati pada bola yang digantung dari senar yang diberi muatan dengan cara menyentuhkannya dengan pengaduk kaca atau batang amber yang telah dimuati. Charles-Augustin de Coulomb meneliti fenomena ini pada abad ke-18 dan menemukan bahwa muatan sejenis akan tolak-menolak, sementara muatan berlawanan jenis akan tarik-menarik.

Arus listrik:

Arus listrik adalah perpindahan muatan listrik, diukur dalam ampere. Arus dapat terdiri dari berbagai partikel bermuatan, seperti elektron atau ion, dan mengalir melalui berbagai media konduktor. Arus konvensional, yang ditentukan dari arah aliran muatan positif, umumnya digunakan untuk menyederhanakan konsep arus listrik.

Medan listrik:

Medan listrik diciptakan oleh muatan yang menghasilkan gaya pada muatan lain di sekitarnya. Medan listrik bekerja serupa dengan medan gravitasi, tetapi dapat menghasilkan tarikan atau tolakan tergantung pada polaritas muatan. Medan listrik didefinisikan dalam gaya dan memiliki besaran serta arah.

Potensial listrik:

Potensial listrik adalah energi yang dibutuhkan untuk membawa sebuah muatan dari jarak tak terhingga ke suatu titik dalam medan listrik. Dalam praktiknya, perbedaan potensial listrik antara dua titik tertentu yang paling sering digunakan. Potensial listrik diukur dalam satuan volt dan didefinisikan terhadap titik referensi, yang seringkali adalah permukaan bumi.

Elektromagnet:

Hubungan antara listrik dan magnet ditemukan oleh Ørsted pada tahun 1821. Interaksi antara medan magnet dan arus membentuk dasar dari elektromagnetisme. Fenomena ini menghasilkan penemuan motor listrik oleh Michael Faraday, yang menunjukkan bahwa medan magnet dapat menghasilkan gaya pada arus, dan sebaliknya.

Elektrokimia:

Elektrokimia merupakan studi tentang interaksi antara listrik dan reaksi kimia. Sel elektrokimia, seperti baterai dan sel elektrolisis, memiliki peran penting dalam berbagai aplikasi, termasuk produksi aluminium dan pengisian ulang peralatan listrik.

Rangkaian listrik:

Rangkaian listrik adalah gabungan komponen listrik yang membentuk jalur tertutup bagi muatan listrik untuk berpindah, sering digunakan untuk mencapai tujuan tertentu. Komponen-komponen tersebut bisa beragam, mulai dari resistor, kapasitor, sakelar, transformator, hingga elektronika. Rangkaian listrik terdiri dari komponen aktif, seperti semikonduktor, yang seringkali memiliki perilaku non-linear dan membutuhkan analisis yang kompleks.

  • Resistor adalah salah satu komponen pasif yang menghambat aliran arus dan menghasilkan panas sebagai energi yang dilepaskan. Hukum Ohm, yang menyatakan bahwa arus dalam suatu rangkaian sebanding dengan perbedaan potensialnya, merupakan dasar teori rangkaian.
  • Kapasitor, yang berkembang dari Leyden jar, mampu menyimpan muatan dan energi listrik dalam medan resultan. Biasanya terdiri dari dua pelat konduktif yang dipisahkan oleh lapisan dielektrik. Satuan kapasitansi adalah farad.
  • Induktor, yang umumnya berbentuk gulungan kawat, menyimpan energi dalam medan magnet sebagai respons terhadap arus yang melalui. Induktansi diukur dalam henry.

Tenaga listrik:

Tenaga listrik merupakan kecepatan perpindahan energi listrik melalui rangkaian listrik, diukur dalam watt. Pembangkit listrik umumnya menggunakan generator listrik atau sumber kimia seperti baterai.

Elektronika:

Elektronika berkaitan dengan rangkaian listrik yang mengandung komponen aktif seperti tabung vakum, transistor, dan dioda. Elektronika memungkinkan pengolahan informasi, telekomunikasi, dan pemrosesan sinyal, serta memfasilitasi kemungkinan penguatan sinyal lemah dan pemrosesan informasi digital.

Gelombang Elektromagnetik

Gelombang elektromagnetik, pertama kali dikaji oleh Faraday dan Ampère, merupakan fenomena di mana perubahan medan magnet menghasilkan medan listrik, dan sebaliknya. Gelombang elektromagnetik dipelajari oleh James Clerk Maxwell, yang menemukan bahwa gelombang ini dapat bergerak dengan kecepatan cahaya dan bahwa cahaya adalah bentuk radiasi elektromagnetik. Hukum Maxwell adalah salah satu pencapaian penting dalam fisika teoretis karena menggabungkan cahaya, medan, dan muatan dalam satu kerangka kerja yang konsisten.

Produksi dan penggunaan

Produksi dan penggunaan listrik telah mengalami perkembangan signifikan sepanjang sejarah, dimulai dari eksperimen Thales pada abad ke-6 SM hingga pembangunan pembangkit listrik modern. Penemuan tumpukan volta pada abad ke-18 dan penggunaan baterai listrik membawa revolusi dalam penyediaan tenaga listrik yang mudah digunakan. Namun, untuk memenuhi kebutuhan energi yang besar, diperlukan pembangkitan listrik secara kontinu melalui generator mekanik-listrik yang mengandalkan berbagai sumber energi, seperti pembakaran bahan bakar fosil, panas dari reaksi nuklir, serta energi kinetik dari angin atau air mengalir.

Dengan ditemukannya turbin uap modern oleh Sir Charles Parsons pada tahun 1884, sekitar 80% tenaga listrik dunia saat ini dihasilkan dari berbagai sumber panas. Kemajuan ini memungkinkan transmisi listrik yang lebih efisien melalui tegangan tinggi namun arus rendah. Dalam konteks ini, utilitas listrik bertanggung jawab untuk memprediksi beban listrik dan menjaga koordinasi dengan stasiun pembangkit untuk memastikan ketersediaan listrik yang cukup.

Permintaan akan listrik terus meningkat seiring dengan modernisasi dan pertumbuhan ekonomi. Hal ini mengakibatkan fokus yang meningkat pada pembangkitan listrik dari sumber energi terbarukan, seperti angin dan air, untuk mengatasi kekhawatiran lingkungan.

Di sisi penggunaan, listrik telah menjadi sumber energi yang sangat penting dan mudah digunakan dalam berbagai aplikasi. Mulai dari penerangan dengan lampu pijar hingga pemanas listrik dan peralatan elektronik, listrik telah menggantikan sumber energi lainnya dalam banyak kasus. Penggunaan listrik juga sangat signifikan dalam telekomunikasi, transportasi, dan industri. Inovasi seperti motor listrik dan transistor telah mengubah lanskap teknologi modern, memberikan efisiensi dan keandalan yang lebih baik dalam berbagai aplikasi.


Disadur dari: en.wikipedia.org 

Selengkapnya
Peran Penting Listrik: Memahami Pentingnya dalam Kehidupan Kita
« First Previous page 492 of 1.094 Next Last »