Solusi Praktis untuk Tanah Mengembang: Pengembangan Formula Sederhana untuk Menentukan Kedalaman Penggantian Tanah yang Optimal

Dipublikasikan oleh Dewi Sulistiowati

29 April 2025, 13.56

pixabay.com

Pendahuluan

Perilaku tanah mengembang tak jenuh akibat perubahan kadar air telah menjadi fokus penelitian intensif sejak tahun 1950-an. Berbagai formula dan teknik telah diusulkan untuk mengklasifikasikan, menggambarkan, dan memprediksi perilaku serta parameter tanah jenis ini. Di sisi lain, banyak teknik digunakan untuk memungkinkan struktur dibangun di atas tanah mengembang tanpa mengalami kerusakan akibat pengangkatan tanah.

Mengganti tanah mengembang dengan campuran granular adalah salah satu teknik yang paling terkenal dan termurah, terutama untuk struktur ringan di lapisan tanah mengembang yang dangkal. Tujuan dari penelitian ini adalah untuk mengembangkan formula sederhana untuk memperkirakan pengangkatan tanah mengembang dengan mempertimbangkan efek lapisan pengganti. Formula yang dikembangkan digunakan untuk memperkirakan kedalaman penggantian yang diperlukan untuk menghindari kerusakan akibat pengangkatan yang berlebihan.

Perilaku Tanah Lempung Mengembang

Hubungan antara kadar air lempung dan kemampuannya untuk mengembang sangat nonlinier seperti yang ditunjukkan pada Gambar 1 dalam paper. Secara umum, peningkatan kadar air sampel tanah mengembang menyebabkan peningkatan volume sampel karena reaksi kimia antara air dan mineral lempung aktif dalam sampel. Jumlah pengangkatan sampel bergantung pada kuantitas dan jenis mineral aktif serta derajat saturasi awal dan akhir. Selain itu, tegangan eksternal yang diterapkan pada sampel memiliki efek signifikan pada pengangkatan.

Tegangan tekan eksternal yang diterapkan pada sampel tanah liat tak jenuh menyebabkan konsolidasi dan penurunan volume sampel. Semakin besar tegangan yang diterapkan, semakin besar penurunan volumenya. Tegangan yang diperlukan untuk mengurangi volume sampel yang mengembang ke volume aslinya disebut "Tekanan Mengembang" (Ps). Tekanan mengembang dapat diukur secara eksperimental dari uji odometer seperti yang ditunjukkan pada Gambar 2 dalam paper. Berdasarkan definisi, jika tegangan eksternal yang diterapkan dari struktur sama dengan atau lebih besar dari tekanan mengembang, maka struktur ini tidak akan mengalami pengangkatan. Bangunan yang lebih berat akan mengalami pengangkatan yang lebih kecil daripada bangunan yang lebih ringan. Efek pengangkatan paling buruk untuk struktur tanpa bobot seperti perkerasan, jalur pipa, rel kereta api, dan menara transmisi.

Identifikasi Tanah Mengembang

Memperkirakan kemampuan tanah untuk mengembang (potensi mengembang) dipelajari secara intensif oleh banyak peneliti. Setiap peneliti menyarankan skala untuk mengklasifikasikan tanah sesuai dengan potensi mengembangnya berdasarkan beberapa pengujian laboratorium dasar. Peneliti sebelumnya menggunakan batas konsistensi sederhana dan pengujian mengembang bebas untuk mengklasifikasikan tanah mengembang. Seiring dengan semakin berkembang dan lengkapnya laboratorium mekanika tanah, pengujian yang lebih canggih digunakan untuk mengklasifikasikan tanah mengembang odometer, mineralogi, dan pengujian pertukaran kation. Sebagian besar penelitian mengklasifikasikan tanah mengembang menurut potensi mengembangnya menjadi empat kategori: rendah, sedang, tinggi, dan sangat tinggi. Beberapa metode klasifikasi yang paling terkenal diringkas dalam Gambar 4 dalam paper.

Metode Awal untuk Memprediksi Heave

Memprediksi jumlah heave adalah salah satu tujuan utama dari mempelajari tanah mengembang. Peneliti sebelumnya menggunakan hasil eksperimen untuk membentuk formula empiris untuk memperkirakan heave berdasarkan parameter tanah dasar seperti batas konsistensi, kadar air, dan kandungan lempung. Beberapa formula empiris yang paling terkenal untuk memprediksi nilai heave adalah formula Vijayvergiya dan Sullivan (1973), formula Schneider dan Poor (1974), formula Johnson (1978), dan formula Weston (1980) seperti yang ditunjukkan pada Gambar 3 dalam paper. Di mana heave sama dengan ketebalan lapisan mengembang dikalikan dengan potensi mengembang. Meskipun formula tersebut mudah diterapkan dan hanya memerlukan sifat tanah dasar, namun memiliki rentang kesalahan yang lebar (sekitar 35%).

Pendekatan ini dikembangkan dengan menggunakan pengujian laboratorium yang lebih canggih untuk meningkatkan akurasi formula empiris. Beberapa contoh formula tersebut adalah Korelasi McKeen dan Lytton (1981), Model McKeen (1992), Model Hafez (1994) seperti yang ditunjukkan pada Gambar 5 dalam paper. Meskipun formula tersebut lebih akurat, namun tetap merupakan regresi data tanpa dasar ilmiah.

Pendekatan lain untuk memperkirakan nilai heave adalah metode analitik yang bergantung pada prinsip-prinsip mekanika tanah dan menggunakan parameter spesifik yang diukur di laboratorium untuk menghitung heave. Berdasarkan parameter yang diukur, metode tersebut dapat diklasifikasikan menjadi dua jenis, metode yang bergantung pada uji odometer volume konstan dan metode yang bergantung pada uji isap tanah (uji odometer isap terkontrol).

Metode yang bergantung pada uji odometer volume konstan, menghitung heave berdasarkan indeks mengembang yang diukur dengan asumsi bahwa kondisi tegangan awal adalah tekanan mengembang yang dikoreksi dan kondisi tegangan akhir adalah tegangan vertikal efektif. Formula dasarnya ditunjukkan pada Gambar 6 dalam paper.

Metode yang bergantung pada uji isap tanah menghitung perkiraan heave berdasarkan indeks mengembang dan kompresibilitas yang diukur menggunakan prinsip-prinsip perilaku tanah liat tak jenuh yang ditunjukkan pada Gambar 7 dalam paper.

Peningkatan kapasitas komputasi komputer memungkinkan penelitian terbaru untuk menggunakan teknik yang lebih canggih seperti model elemen hingga yang digabungkan dan tidak digabungkan untuk memprediksi heave.

Formula yang Diusulkan untuk Memprediksi Heave

Formula yang diusulkan termasuk dalam metode analitik yang bergantung pada uji odometer volume konstan. Untuk menghitung heave dari lapisan tanah liat mengembang yang homogen dan isotropik yang tebalnya tak terhingga dimulai dari permukaan tanah tanpa permukaan air tanah, pertama-tama kedalaman kritis (Hc) (atau kadang-kadang disebut kedalaman aktif) harus ditentukan. Pada kedalaman kritis, tegangan vertikal efektif sama dengan tekanan mengembang. Di bawah kedalaman kritis, tanah tidak akan heave. Kemudian kedalaman kritis dibagi menjadi 20 sub-lapisan tebal yang sama, setiap lapisan mengalami tegangan ke atas sama dengan tekanan mengembang. Heave dari setiap sub-lapisan dihitung berdasarkan formula yang ditunjukkan pada Gambar 6 dalam paper.

Rasio antara total heave pada setiap sub-lapisan (n) pada kedalaman (H) di dalam kedalaman kritis dan total heave pada permukaan tanah dapat dihitung sebagai penjumlahan heave dari sub-lapisan (n) dan ke bawah ke sub-lapisan (1) dibagi dengan total heave pada permukaan tanah, yang dapat disederhanakan dengan regresi logaritmik menjadi 0,25 Ln(Hc/H). Karena penyederhanaan, H dibatasi antara (0,02 Hc hingga 1,0 Hc). Total heave pada setiap kedalaman adalah total heave pada permukaan tanah dikalikan dengan rasio ini.

Untuk tanah liat mengembang dengan ketebalan terbatas dengan permukaan atas pada kedalaman (Ht) dan permukaan bawah pada kedalaman (Hb) dari permukaan tanah, total heave dari lapisan ini (∆h) adalah selisih antara total heave pada kedalaman (Ht) dan (Hb) sebagai berikut:

Jika hasil uji odometer tidak tersedia, Cs sama dengan (1/6 hingga 1/10) Cc (indeks kompresi), dan Cc berkisar antara (0,007 - 0,009).(LL-10) menurut rasio over-konsolidasi tanah liat, di mana LL adalah persentase batas cair (70% hingga 90% untuk sebagian besar tanah liat mengembang). Oleh karena itu, Cc berkisar antara (0,06 hingga 0,13)LL , di mana LL adalah fraktur desimal. Skempton (1953) menyarankan tiga kelas tanah liat: tidak aktif untuk aktivitas kurang dari 0,75; normal untuk aktivitas antara 0,75 dan 1,25; dan aktif untuk aktivitas lebih besar dari 1,25. Nilai khas aktivitas untuk mineral tanah liat yang berbeda adalah seperti yang ditunjukkan pada Tabel 1 dalam paper.

Selain itu, tekanan mengembang dapat diukur secara eksperimental atau diperkirakan menggunakan formula empiris apa pun yang tercantum dalam Gambar 3 dalam paper.

Verifikasi Formula Heave yang Diusulkan

Heave dari pelat lantai kelas di bangunan industri ringan di Regina utara-tengah, Saskatchewan dipantau dan dianalisis oleh Yoshida et al., (1983) menggunakan metode analitik berdasarkan uji odometer volume konstan, dan dilaporkan serta dianalisis oleh Fredlund dan Hung, (2004) menggunakan model elemen hingga yang tidak digabungkan. Pembangunan gedung dan instrumentasi berlangsung selama Agustus 1961. Instrumentasi yang dipasang di lokasi termasuk patokan dalam, pengukur gerakan vertikal, dan tabung akses meteran kelembaban neutron. Gerakan tanah vertikal dipantau pada kedalaman 0,58, 0,85, dan 2,39 m di bawah permukaan tanah asli.

Pemilik bangunan memperhatikan heave dan retakan pada pelat lantai pada awal Agustus 1962, sekitar setahun setelah pembangunan. Peningkatan tak terduga dalam konsumsi air sekitar 35000L tercatat. Jalur air panas retak di bawah pelat lantai. Analisis laboratorium untuk sampel di lokasi dilakukan. Batas Atterberg, kadar air in-situ, distribusi ukuran butiran, dan tekanan mengembang sampel dievaluasi. Tekanan mengembang dan indeks mengembang diperoleh dengan uji odometer volume konstan untuk tiga sampel. Lokasi retakan, kontur heave, ringkasan batas Atterberg, dan hasil uji odometer ditunjukkan pada Gambar 9 dalam paper. Biaya tambahan adalah berat pelat beton setebal 100mm pada kelas dan pasir setebal 180mm.

Kesimpulan

Formula yang diusulkan memberikan cara yang lebih sederhana dan akurat untuk memperkirakan heave tanah mengembang dan menentukan kedalaman penggantian tanah yang optimal.

Sumber: Dr. Hisham Arafat, Dr. Ahmed M. Ebid. Optimum Replacement Depth to Control Heave of Swelling Clays. International Journal of Engineering and Innovative Technology (IJEIT), 2015.