Bagi siapa pun yang pernah merasakan frustrasi duduk di landasan pacu, menunggu di gerbang keberangkatan yang penuh sesak, atau berputar-putar di udara sebelum mendarat, ada satu pertanyaan yang selalu muncul: Mengapa penerbangan selalu tertunda?
Ini bukan sekadar keluhan. Ini adalah krisis sistemik. Industri penerbangan global, yang menopang $2.7 triliun aktivitas ekonomi dan mengangkut 4.1 miliar penumpang setiap tahunnya, beroperasi di bawah tekanan yang luar biasa.1 Sistem Manajemen Lalu Lintas Udara (ATM) yang menopangnya telah mencapai titik jenuh.
Di Amerika Serikat, 16.5% dari seluruh penerbangan domestik mengalami penundaan lebih dari 15 menit. Di Eropa, angkanya mencapai 18.2%.1 Penundaan ini lebih dari sekadar ketidaknyamanan; ini adalah kerugian ekonomi yang mengejutkan. Satu studi memperkirakan kerugian tahunan akibat penundaan penerbangan di AS saja mencapai $31.2 miliar.1
Selama ini, kita menerima kemacetan di langit sebagai harga yang harus dibayar untuk dunia yang terhubung. Namun, sebuah penelitian doktoral penting dari Massachusetts Institute of Technology (MIT) berargumen sebaliknya. Penelitian oleh Dr. Mayara Condé Rocha Murça ini menunjukkan bahwa masalahnya bukanlah jumlah pesawat, melainkan cara kita mengelolanya. Dan jawabannya, menurut penelitian tersebut, tersembunyi dalam data pelacakan penerbangan yang selama ini kita abaikan.1
Langit yang Terjebak di Abad ke-20: Mengapa Sistem Saat Ini Gagal
Masalah inti dari sistem ATM saat ini adalah ia terjebak di masa lalu. Tesis ini dengan tajam mengidentifikasi bahwa kita masih mengandalkan "teknologi dan prosedur operasional dari abad yang lalu" untuk mengelola jaringan transportasi di abad ke-21.1
Selama beberapa dekade, manajemen lalu lintas udara lebih mirip seni daripada sains. Sistem ini sangat bergantung pada "pengalaman manusia," "intuisi," dan "model mental" yang dibentuk oleh para pengawas lalu lintas udara (ATC) dan manajer penerbangan selama bertahun-tahun.1 Mereka mengandalkan "aturan emas" dan pengalaman pribadi untuk memprediksi bagaimana lalu lintas akan mengalir dan di mana kemacetan akan terjadi.
Ketergantungan pada intuisi ini memiliki kelemahan fatal. Seperti yang ditunjukkan oleh penelitian ini, pendekatan ini cenderung reaktif, bukan proaktif. Keputusan seringkali diambil berdasarkan aspek lokal (apa yang terjadi di satu bandara) daripada perspektif sistem (bagaimana keputusan itu memengaruhi tiga bandara lain di kota yang sama).1
Peneliti membuktikan poin ini dengan visualisasi yang mencolok. Dengan memetakan lintasan penerbangan aktual ke Bandara John F. Kennedy (JFK) di New York, data menunjukkan bahwa pola lalu lintas pada jam 12 siang sangat berbeda dengan pola pada jam 8 malam. Yang lebih mengejutkan, rute-rute yang sebenarnya diterbangkan pesawat ini seringkali tidak sepenuhnya cocok dengan rute standar yang dipublikasikan (disebut STARs).1
Ini adalah sebuah wahyu. Pada dasarnya, para manajer lalu lintas udara telah mencoba mengelola kemacetan dengan peta yang sudah ketinggalan zaman. Mereka mengandalkan rute yang seharusnya, sementara pesawat—karena cuaca, lalu lintas lain, atau arahan taktis—terbang di rute yang sama sekali berbeda.
Membaca Pikiran Langit: Sebuah "Penerjemah" Data Penerbangan Baru
Untuk mengatasi kegagalan sistemik ini, penelitian MIT mengusulkan sebuah "kerangka kerja analitik data" yang revolusioner.1 Daripada mengandalkan peta yang kaku atau intuisi manusia, kerangka kerja ini dirancang untuk secara otomatis belajar dari data pelacakan penerbangan skala besar.1
Ini adalah alat untuk "membaca pikiran langit"—memahami bagaimana pesawat sebenarnya terbang dalam waktu nyata. Metodologi inti di baliknya adalah proses cerdas yang disebut multi-layer clustering (klastering berlapis).1
Bayangkan proses ini dalam dua langkah sederhana:
Lapisan 1: Menemukan "Jalan Setapak" di Langit
Pertama, sistem menyaring jutaan titik data pelacakan penerbangan (mirip dengan data GPS dari setiap pesawat) untuk menemukan kesamaan. Ini disebut Spatial Clustering (Klastering Spasial).1
Alih-alih hanya melihat jalan raya resmi yang dipublikasikan, model ini bekerja seperti seseorang yang mencari "jalan setapak" di padang rumput dengan melihat di mana rumput paling sering terinjak. Model ini (menggunakan algoritma yang disebut DBSCAN) secara otomatis mengelompokkan lintasan-lintasan yang mirip yang sering digunakan pesawat.1
Hasilnya adalah peta baru yang dinamis dari "jalan setapak" yang sebenarnya ada di langit. Ini disebut trajectory patterns (pola lintasan).
Lapisan 2: Mengidentifikasi "Mode Lalu Lintas"
Setelah mengetahui semua "jalan setapak" yang ada, langkah selanjutnya adalah memahami kapan jalan-jalan itu digunakan secara bersamaan. Ini adalah Temporal Clustering (Klastering Temporal).1
Misalnya, sistem mungkin menemukan bahwa pada pagi hari yang cerah, Bandara A, B, dan C selalu menggunakan kombinasi jalan setapak 1, 5, dan 9. Ini adalah satu "mode" operasi. Namun, saat badai mendekat, sistem beralih ke "mode" yang sama sekali berbeda, hanya menggunakan jalan setapak 2 dan 7.
Tesis ini memberi nama pada mode-mode ini: Metroplex Flow Patterns (MFPs).1 Ini adalah konfigurasi operasional kolektif dari seluruh sistem bandara.1
Implikasi dari temuan ini sangat besar. Dengan mendefinisikan MFPs, peneliti telah berhasil menciptakan bahasa baru yang terstandardisasi untuk menggambarkan keadaan lalu lintas udara yang sangat kompleks. Apa yang sebelumnya hanya ada dalam "intuisi" seorang pengawas ATC, kini telah menjadi titik data yang terdefinisi dan terukur (misalnya, "Sistem New York sekarang berada di MFP-4"). Ini membuat kekacauan di langit untuk pertama kalinya dapat diukur dan, yang terpenting, diprediksi.
Uji Coba Global: Membedah Tiga Kota Paling Rumit di Dunia
Untuk membuktikan nilai kerangka kerja baru ini, peneliti menerapkannya pada tiga "laboratorium" dunia nyata yang paling menantang: sistem multi-bandara (metroplex) di New York (JFK, Newark-EWR, LaGuardia-LGA), Hong Kong (HKG, Shenzhen-SZX, Macau-MFM), dan Sao Paulo (Guarulhos-GRU, Congonhas-CGH, Viracopos-VCP).1
Ketiga sistem ini sangat padat. Pada tahun 2016, metroplex New York melayani 128.9 juta penumpang, Hong Kong 118.9 juta, dan Sao Paulo 66.7 juta.1
Ketika kerangka kerja data ini diterapkan, ia mengungkap "kepribadian" operasional yang unik dan seringkali mengejutkan dari setiap kota, yang dijelaskan secara rinci dalam Bab 3 penelitian ini.
New York: Mangkuk Spageti yang Rapuh
Langit di atas New York adalah yang paling kompleks di dunia. Analisis data mengonfirmasi hal ini dalam angka yang gamblang: sistem ini memiliki 50 pola rute kedatangan dan 55 pola rute keberangkatan yang berbeda.1
Peneliti kemudian mengukur seberapa sering rute-rute ini saling bersinggungan. Hasilnya mengejutkan. Hanya antara dua bandara, JFK dan LGA, penelitian ini mengidentifikasi 130 titik persimpangan di mana rute-rute pesawat saling tumpang tindih baik secara lateral maupun vertikal. Ini menciptakan apa yang disebut penelitian sebagai "struktur wilayah udara paling berkonflik".1
Kompleksitas struktural ini mengarah pada ketidakstabilan operasional yang ekstrem. Analisis temporal menemukan bahwa New York secara konstan "berjuggling" di antara 12 mode operasi (MFP) yang berbeda, sementara Hong Kong dan Sao Paulo masing-masing hanya memiliki 4 mode utama.1
Betapa tidak stabilnya New York? Pola operasi yang paling umum (MFP-1) hanya terjadi 15.8% dari waktu. Bandingkan dengan Sao Paulo, di mana mode utamanya stabil dan digunakan 53.5% dari waktu. Rata-rata, sistem New York terpaksa mengubah konfigurasi operasinya 5 kali sehari, sementara Hong Kong hanya 2 kali.1
Meskipun kompleks, New York memiliki kapasitas sistem tertinggi, dengan median 118 kedatangan per jam.1 Namun, kinerjanya sangat rapuh. Penelitian ini menemukan bahwa perbedaan kapasitas antara mode operasi terbaik dan terburuk di New York bisa mencapai 44 pesawat per jam.1 Ini adalah variabilitas yang sangat besar, yang menjelaskan mengapa penundaan di New York bisa terjadi begitu cepat dan parah.
Kepribadian New York adalah kinerja tinggi namun sangat rapuh. Sistem ini terus-menerus menyesuaikan diri untuk mengatasi desainnya yang saling terkait, di mana satu perubahan kecil di JFK dapat langsung menimbulkan dampak berantai di LGA.
Hong Kong: Paradoks Efisiensi dan Keamanan
Metroplex Hong Kong, sebaliknya, memiliki desain yang jauh lebih "bersih" dan teratur. Analisis persimpangan rute hanya menemukan 12 interaksi antara rute bandara utamanya (HKG) dan bandara tetangganya (SZX), sangat jauh dari 130 di New York.1
Namun, di sinilah letak kejutannya. Meskipun desainnya bersih, analisis data mengungkap sebuah paradoks: Hong Kong memiliki efisiensi lateral terendah dari ketiga metroplex. Ini berarti pesawat yang terbang di wilayah udara Hong Kong menempuh rute yang paling panjang dan paling berbelit-belit untuk mencapai landasan pacu (dikenal sebagai structural path stretch tertinggi).1
Tesis ini menyiratkan bahwa ini mungkin sebuah pilihan desain yang disengaja. Hong Kong tampaknya secara sengaja mengorbankan efisiensi (membakar lebih banyak bahan bakar dan waktu tempuh) untuk mendapatkan keamanan dan pemisahan rute (de-confliction). Dengan membuat pesawat terbang lebih lama di rute yang terpisah jauh, mereka mengurangi kompleksitas bagi pengawas lalu lintas udara.1
Sao Paulo: Terbatas oleh Aspal
Sao Paulo menunjukkan gambaran yang berlawanan. Data menunjukkan bahwa sistem ini memiliki desain rute udara yang paling efisien. Pesawat terbang di rute yang lebih lurus dan lebih pendek dibandingkan New York atau Hong Kong (structural path stretch terendah).1
Namun, Sao Paulo memiliki kapasitas sistem terendah, dengan median hanya 48 kedatangan per jam (dibandingkan dengan 118 di New York).1
Wawasan dari data ini jelas: masalah Sao Paulo bukanlah di langit; masalahnya ada di aspal. Rute udaranya dirancang dengan baik, tetapi kapasitas landasan pacu fisiknya yang terbatas menjadi penghambat utama bagi seluruh sistem.1
Dari "Peramal Cuaca" Menjadi "Peramal Kapasitas Bandara"
Setelah berhasil memahami bagaimana sistem beroperasi (Bab 3), penelitian ini beralih ke tujuan yang lebih ambisius: memprediksi bagaimana sistem akan beroperasi di masa depan (Bab 4).
Para peneliti menggunakan teknik supervised learning (pembelajaran terawasi).1 Pada dasarnya, mereka "melatih" model komputer dengan data historis selama berbulan-bulan, memberinya ribuan contoh seperti:
- [Prakiraan Cuaca X] + =.
Setelah "belajar" dari ribuan contoh ini, model tersebut dapat memprediksi secara akurat apa itu Z (Kapasitas Masa Depan) hanya dengan diberi X dan Y (Prakiraan Cuaca dan Permintaan).
Model yang paling akurat, yang disebut Gaussian Process (GP), terbukti sangat berhasil.1 Model ini secara konsisten mengalahkan baseline—perkiraan kapasitas yang digunakan oleh Federal Aviation Administration (FAA) saat ini. Di bandara JFK, model baru ini berhasil mengurangi error prediksi (MAPE) rata-rata sebesar 5.4% dibandingkan dengan baseline.1
Namun, temuan paling penting muncul ketika peneliti menganalisis faktor apa yang paling penting dalam membuat prediksi yang akurat. Seperti yang diharapkan, faktor terpenting adalah "tingkat kedatangan saat ini" (menunjukkan inersia sistem).
Tetapi, faktor terpenting kedua adalah "Metroplex Flow Pattern (MFP)".1
Ini adalah "momen aha" dari penelitian ini. Ini adalah bukti kuantitatif bahwa "bahasa baru" (MFP) yang ditemukan di Bab 3 adalah kunci untuk membuka prediksi yang akurat. Ini membuktikan bahwa Anda tidak dapat memprediksi kapasitas JFK secara akurat tanpa mengetahui konfigurasi sistem secara keseluruhan—yaitu, apa yang sedang dilakukan oleh LGA dan EWR pada saat yang bersamaan. Model ini adalah yang pertama berhasil mengkuantifikasi ketergantungan sistemik ini.
Tentu saja, model prediktif ini memiliki kelemahan. Model ini hanya secerdas data cuaca (TAF) yang menjadi masukannya.1 Seperti kata pepatah "sampah masuk, sampah keluar," prakiraan cuaca yang buruk atau tidak akurat akan tetap menghasilkan prediksi kapasitas yang buruk, secanggih apa pun modelnya.
Namun, keindahan dari model probabilistik (berbasis peluang) ini adalah ia tahu bahwa ia mungkin salah. Ia tidak hanya memberi satu angka ("kapasitas adalah 40 pesawat per jam"), tetapi sebuah rentang berbasis kepercayaan ("kemungkinan besar kapasitas akan berada di antara 35 dan 45 pesawat per jam"), yang jauh lebih realistis dan berguna bagi perencana manusia.
Pengurangan Penundaan 9,7%: Inilah Dampak Nyata Temuan Ini
Bagian terakhir dari penelitian ini adalah puncaknya—mengubah wawasan deskriptif dan prediktif menjadi solusi preskriptif (rekomendasi tindakan) yang nyata.1
Di sinilah kita kembali ke pengalaman frustrasi menunggu di gerbang. Seringkali, penundaan itu disengaja, bagian dari strategi yang disebut Ground Delay Programs (GDPs). GDP adalah saat otoritas penerbangan dengan sengaja menahan pesawat Anda di darat (di mana lebih aman dan murah) untuk mencegah kemacetan di bandara tujuan.1
Masalahnya, GDP bergantung sepenuhnya pada prediksi kapasitas (disebut Airport Acceptance Rates, atau AARs).
- Jika prediksi kapasitas terlalu pesimis (meremehkan), ratusan pesawat ditahan di darat tanpa perlu, membuang-buang waktu penumpang.
- Jika prediksi terlalu optimis (melebih-lebihkan), pesawat-pesawat itu tetap terbang dan berakhir dalam pola holding (berputar-putar) di udara dekat bandara tujuan—membakar bahan bakar yang mahal dan menciptakan situasi yang lebih rumit bagi ATC.1
Peneliti MIT menghubungkan model prediksi kapasitas super-akurat mereka (model GP) ke dalam model optimisasi baru untuk merencanakan AARs ini.1 Model ini dirancang untuk menemukan keseimbangan sempurna antara menahan pesawat di darat dan risiko menahannya di udara.
Hasilnya diuji pada lima peristiwa GDP historis yang benar-benar terjadi di JFK.1
Ketika dibandingkan, model optimisasi baru yang didukung oleh data-driven AARs ini berhasil mencapai pengurangan biaya penundaan keseluruhan hingga 9.7% dibandingkan dengan AARs baseline yang sebenarnya digunakan oleh FAA pada hari-hari tersebut.1
Angka 9.7% ini bukan sekadar perbaikan kecil. Ini adalah lompatan besar dalam efisiensi sistem. Jika biaya penundaan di AS saja mencapai $31.2 miliar per tahun 1, penghematan hampir 10% berarti potensi penghematan miliaran dolar bagi maskapai (dalam bahan bakar, biaya kru, dan penempatan ulang pesawat) dan penghematan jutaan jam waktu tunggu kolektif bagi penumpang.
Model ini bahkan menyertakan "tombol" yang oleh peneliti disebut parameter robustness (kekokohan).1 Ini memungkinkan manajer lalu lintas manusia untuk memilih: apakah mereka ingin efisiensi maksimum (yang mungkin datang dengan risiko lebih tinggi jika cuaca berubah) atau prediktabilitas maksimum (rencana yang lebih stabil dan "kokoh" dengan biaya efisiensi yang sedikit lebih tinggi). Ini adalah alat canggih yang dirancang untuk mendukung, bukan menggantikan, pengambil keputusan manusia.
Pernyataan Dampak: Masa Depan Tepat Waktu
Penelitian ini berhasil memecahkan kode DNA operasional dari sistem lalu lintas udara kita yang paling kompleks. Ia menyediakan seperangkat alat, bukan hanya untuk memahami keterlambatan, tetapi untuk memprediksinya dengan akurasi yang lebih tinggi dan, yang terpenting, untuk secara proaktif menguranginya.
Jika diterapkan secara luas, wawasan dan model yang dikembangkan dalam penelitian ini dapat menjadi tulang punggung sistem ATM generasi berikutnya (seperti NextGen di AS). Dalam lima tahun ke depan, pendekatan berbasis data ini dapat secara signifikan mengurangi biaya bahan bakar maskapai yang terbuang di udara, mengurangi dampak lingkungan penerbangan, dan—yang paling penting bagi kita semua—mengembalikan jutaan jam waktu berharga yang hilang di ruang tunggu bandara.
Sumber Artikel:
Murça, M. C. R. (2018). Data-Driven Modeling of Air Traffic Flows for Advanced Air Traffic Management.. MIT DSpace. http://hdl.handle.net/1721.1/118331