Penelitian Ini Mengungkap Rahasia Kelam di Balik Kecelakaan Lalu Lintas Semarang – Kelompok Usia Ini Ternyata Paling Rentan!

Dipublikasikan oleh Hansel

28 Oktober 2025, 15.16

kompas.id

Lampu Merah Lalu Lintas Semarang: Alarm dari Data Kecelakaan yang Terus Berbunyi

Kota Semarang, ibu kota Provinsi Jawa Tengah, adalah sebuah denyut nadi kehidupan yang terus berkembang. Terletak strategis di pesisir utara Jawa, antara garis 6°50' - 7°10' Lintang Selatan dan 109°35'-110°50' Bujur Timur, kota ini membentang dari dataran rendah pantai hingga perbukitan dengan ketinggian mencapai 348 meter di atas permukaan laut.1 Dengan populasi mencapai lebih dari 1,57 juta jiwa pada tahun 2013 dan tingkat pertumbuhan tahunan yang signifikan, mencapai 13,25% antara 2003-2013, Semarang adalah magnet urbanisasi dan pusat aktivitas ekonomi.1 Namun, di balik dinamika pertumbuhan ini, terselip sebuah realitas kelam yang terus menghantui jalan-jalan rayanya: ancaman kecelakaan lalu lintas.

Seiring bertambahnya jumlah penduduk, kebutuhan akan mobilitas dan transportasi melonjak drastis. Fenomena ini, sayangnya, tidak diimbangi dengan peningkatan infrastruktur atau kesadaran keselamatan yang memadai, sehingga memperbesar risiko terjadinya insiden di jalan raya.1 Jalanan yang seharusnya menjadi urat nadi penghubung justru kerap berubah menjadi arena tragedi. Skala masalah ini tidak main-main. Secara global, Organisasi Kesehatan Dunia (WHO) mencatat angka yang mengerikan: hampir 3.400 orang kehilangan nyawa di jalanan dunia setiap harinya, dengan puluhan juta lainnya terluka.1 Di Indonesia sendiri, Kepolisian Republik Indonesia (POLRI) melaporkan rata-rata 80 kematian per hari akibat kecelakaan lalu lintas sepanjang tahun 2013 – setara dengan tiga nyawa melayang setiap jamnya.1 Statistik Direktorat Lalu Lintas Polda Jawa Tengah antara 2009 hingga Mei 2014 pun melukiskan gambaran suram, dengan lebih dari 17.800 korban jiwa dan kerugian materiil melampaui 105 miliar Rupiah.1 Angka-angka ini menjadi penanda bahwa jalan raya di Indonesia, termasuk di Semarang, masih menjadi tempat yang sangat berbahaya.

Fokus pada Kota Semarang, data dari Polrestabes setempat menegaskan urgensi masalah ini. Antara tahun 2012 dan 2013 saja, tercatat 2.807 kasus kecelakaan yang merenggut 460 nyawa, menyebabkan 231 orang luka berat, dan 3.443 lainnya luka ringan.1 Meskipun data tahunan dari 2012 hingga 2014 menunjukkan tren penurunan jumlah kejadian (dari 1.049 kasus di 2012 menjadi 801 kasus di 2014), angka tersebut masih terbilang sangat tinggi.1 Lebih mengkhawatirkan lagi, angka-angka ini hanyalah puncak gunung es. Pihak kepolisian menyadari bahwa ini adalah reported accidents, atau kecelakaan yang tercatat secara resmi. Kenyataannya, banyak insiden, terutama yang tidak fatal, mungkin tidak dilaporkan karena berbagai alasan, termasuk keengganan masyarakat.1 Ini berarti, skala sebenarnya dari masalah kecelakaan lalu lintas di Semarang bisa jadi jauh lebih besar dari apa yang tertera di atas kertas.

Di tengah kondisi ini, muncul sebuah tren yang sangat meresahkan, sebagaimana diidentifikasi oleh Polrestabes Semarang: adanya peningkatan jumlah peristiwa kecelakaan yang melibatkan kelompok usia muda – pelajar, mahasiswa, dan pekerja di bawah usia 30 tahun – dalam kurun waktu lima tahun sebelum penelitian ini dilakukan.1 Fenomena ini menjadi lampu kuning yang menyala terang, menandakan adanya kerentanan spesifik pada demografi usia produktif dan generasi penerus kota ini.

Selama ini, upaya analisis kecelakaan seringkali terfokus pada identifikasi lokasi rawan atau "black spot", seperti yang dilakukan pada beberapa studi kasus sebelumnya di Semarang, Tabanan, dan Bandung.1 Meskipun penting, pendekatan berbasis lokasi ini belum cukup untuk menjawab pertanyaan fundamental: Mengapa kecelakaan terjadi? Siapa yang paling berisiko? Dan faktor apa yang paling dominan? Menjawab pertanyaan-pertanyaan inilah yang menjadi krusial untuk merancang strategi pencegahan yang benar-benar efektif dan tepat sasaran. Diperlukan sebuah lompatan analisis yang lebih mendalam, yang mampu menggali pola-pola tersembunyi di balik data mentah kecelakaan. Menjawab kebutuhan mendesak inilah, sebuah penelitian komprehensif dilakukan oleh Muhammad Syaeful Fajar dari Universitas Negeri Semarang (UNNES) pada tahun 2015, menggunakan pendekatan analisis data canggih untuk membedah data kecelakaan lalu lintas di Kota Semarang.1

 

Membedah Tragedi di Jalan Raya: Bagaimana Analisis Data Canggih Mengungkap Pola Tersembunyi?

Penelitian berjudul "Analisis Kecelakaan Lalu Lintas Jalan Raya di Kota Semarang Menggunakan Metode K-Means Clustering" ini menjadi sebuah upaya signifikan untuk memahami dinamika kecelakaan di Semarang secara lebih mendalam.1 Sumber data utama yang menjadi tulang punggung analisis ini adalah Laporan Tahunan Kecelakaan Lalu Lintas dari Unit Laka Lantas Polrestabes Semarang untuk tahun 2014.1 Data ini mencakup catatan rinci mengenai 1.303 individu, baik korban maupun pelaku, yang terlibat dalam kecelakaan kendaraan bermotor sepanjang tahun tersebut.1 Meskipun data kontekstual dari tahun 2010 hingga 2014 mungkin juga dieksplorasi dalam tahap awal 1, fokus analisis utama terletak pada potret kondisi tahun 2014.

Metode yang dipilih untuk membongkar pola dalam data ini adalah K-Means Clustering, sebuah teknik penambangan data (data mining) yang kuat.1 Secara sederhana, K-Means bekerja seperti mesin penyortir otomatis yang sangat cerdas. Bayangkan ribuan lembar laporan kecelakaan yang kompleks; K-Means mampu mengelompokkannya ke dalam beberapa 'tumpukan' atau 'cluster' yang bermakna, di mana setiap cluster berisi kasus-kasus kecelakaan yang memiliki karakteristik serupa.1 Tujuan utama penggunaan metode ini dalam konteks Semarang adalah untuk mengidentifikasi apakah ada pola-pola unik terkait usia pelaku/korban, faktor penyebab utama kecelakaan (manusia, jalan, lingkungan, atau kendaraan), jenis hari kejadian (hari kerja, akhir pekan, atau hari libur), dan jenis kendaraan yang paling sering terlibat.1 Dengan mengungkap pola-pola ini, diharapkan dapat dirumuskan langkah-langkah pencegahan yang lebih terarah dan efektif.

Namun, sebelum data dapat dianalisis, langkah krusial yang disebut preprocessing data harus dilakukan.1 Data kecelakaan mentah seringkali bersifat "kotor" – mungkin tidak lengkap (incomplete), mengandung kesalahan atau nilai aneh (noisy), atau memiliki informasi yang saling bertentangan (inconsistent).1 Proses preprocessing ini ibarat membersihkan dan merapikan bahan baku sebelum diolah, memastikan bahwa data yang dianalisis memiliki kualitas yang baik dan bebas dari 'noise' yang tidak relevan.1 Tujuannya adalah untuk mentransformasikan data ke dalam format yang lebih efektif dan akurat, sehingga hasil analisis nantinya dapat diandalkan.1 Dalam penelitian ini, dari berbagai variabel yang tercatat dalam laporan (seperti nama, pekerjaan, TKP, tanggal, jam, merek kendaraan), dipilih beberapa variabel kunci yang dianggap paling berpengaruh dan cukup lengkap datanya untuk proses pengelompokan: jenis kendaraan (motor, mobil, truk/bus), penyebab (faktor pengemudi, jalan, lingkungan, kendaraan), dan jenis hari (hari kerja, hari libur, akhir pekan).1

Salah satu tantangan dalam menggunakan metode K-Means adalah sensitivitasnya terhadap titik awal analisis, yang disebut 'centroid awal'.1 Bayangkan kita ingin membuat tiga kelompok; cara kita memilih tiga titik awal pertama secara acak bisa mempengaruhi hasil akhir pengelompokan. Jika titik awalnya kurang tepat, hasil clusteringnya pun bisa jadi kurang optimal atau bahkan menyesatkan.1 Menyadari potensi ini, peneliti tidak hanya menerapkan metode K-Means secara langsung, tetapi melakukan langkah ekstra untuk memastikan keandalan hasilnya. Dua metode berbeda untuk menentukan centroid awal diuji coba dan dibandingkan:

  1. Simple Random Sampling (SRS): Metode sederhana di mana titik awal dipilih secara acak sepenuhnya dari data yang ada.1
  2. Analogy Based Estimation (ABE) yang Dimodifikasi: Metode ini diadaptasi dari teknik estimasi biaya proyek, dengan prinsip bahwa kasus yang serupa cenderung memiliki karakteristik serupa.1 Dalam konteks ini, peneliti menggunakan peringkat (nilai terendah, nilai tengah/median, dan nilai tertinggi) dari variabel yang paling dominan – yaitu jumlah kecelakaan sepeda motor berdasarkan usia – untuk menetapkan tiga titik centroid awal secara lebih terstruktur.1

Penting untuk dicatat bahwa penelitian ini tidak sekadar menerapkan metode standar. Peneliti secara cermat menguji dua pendekatan berbeda untuk memulai analisis pengelompokan data. Pendekatan yang lebih canggih, yang diadaptasi dari metode estimasi analogi (ABE), terbukti jauh lebih efektif dan efisien dibandingkan metode acak sederhana (SRS). Hasil perbandingan menunjukkan keunggulan signifikan metode ABE. Analisis menggunakan ABE mampu mencapai kondisi stabil, di mana anggota kelompok tidak lagi berpindah-pindah, hanya dalam 3 putaran perhitungan (iterasi).1 Sebaliknya, metode SRS menunjukkan ketidakstabilan; bahkan setelah 11 iterasi, anggota kelompok masih terus berubah, dan nilai centroid belum juga konvergen.1 Tingkat ketelitian (perbedaan nilai centroid antar iterasi) pada SRS masih di atas 100% pada iterasi ke-11, menandakan hasil yang buruk, sementara ABE mencapai 0% pada iterasi ke-4, menunjukkan hasil yang sangat baik dan stabil.1 Ini menunjukkan bahwa pola-pola yang ditemukan melalui metode ABE bukanlah kebetulan statistik belaka, melainkan representasi yang kuat dari dinamika kecelakaan di Semarang.

Berdasarkan hasil analisis data yang kuat ini, serta masukan praktis dari pihak kepolisian (khususnya wawancara dengan AKP Slamet, Kepala Unit Laka Lantas Polrestabes Semarang saat itu), ditetapkanlah tiga cluster utama untuk mengkategorikan tingkat risiko kecelakaan berdasarkan profil yang ditemukan 1:

  • Cluster 1: Hati-hati (Risiko Rendah)
  • Cluster 2: Waspada (Risiko Sedang)
  • Cluster 3: Berbahaya (Risiko Tinggi)

Penentuan jumlah tiga cluster ini tidak hanya didasarkan pada perhitungan matematis algoritma, tetapi juga mempertimbangkan kemudahan interpretasi dan relevansi operasional bagi pihak kepolisian dalam merancang tindakan penanganan masalah.1 Keterlibatan praktisi lapangan ini memastikan bahwa kategori yang dihasilkan tidak hanya valid secara statistik, tetapi juga bermakna dalam konteks penanganan kecelakaan lalu lintas di dunia nyata.

 

Fokus Tajam pada Usia Rawan: Siapa Pengguna Jalan Paling Berisiko di Semarang?

Setelah melalui proses analisis yang cermat menggunakan metode K-Means Clustering dengan inisialisasi Analogy Based Estimation (ABE) yang terbukti unggul, hasil pengelompokan data kecelakaan tahun 2014 di Semarang mengungkapkan pola yang sangat jelas terkait kelompok usia yang paling rentan. Temuan ini memberikan fokus yang tajam pada demografi pengguna jalan yang memerlukan perhatian khusus.

Temuan yang paling menonjol dan mengkhawatirkan adalah dominasi kelompok usia 18 hingga 24 tahun dalam Cluster 3: Berbahaya.1 Analisis data secara tegas menempatkan rentang usia ini sebagai episentrum risiko kecelakaan tertinggi di Semarang berdasarkan data tahun 2014.1 Kelompok usia ini sebagian besar terdiri dari pelajar Sekolah Menengah Atas (SMA) tingkat akhir, mahasiswa, dan pekerja muda yang baru memasuki dunia kerja.1 Ini adalah fase transisi penting dalam kehidupan, namun data menunjukkan bahwa periode ini juga merupakan masa paling berbahaya di jalan raya Semarang. Tingginya angka kecelakaan pada kelompok ini kemungkinan besar terkait dengan kombinasi antara euforia kebebasan berkendara, kurangnya pengalaman matang, kecenderungan mengambil risiko, dan mungkin pengaruh lingkungan pergaulan.

Berbeda dengan kelompok usia 18-24 tahun, Cluster 2: Waspada (Risiko Sedang) mencakup spektrum usia yang lebih luas.1 Di dalamnya terdapat remaja usia 14 tahun serta 16-17 tahun (pelajar SMP dan SMA awal), kelompok usia produktif utama (25 hingga 53 tahun), usia 55 tahun, dan juga kasus-kasus di mana usia pelaku atau korban tidak diketahui – yang seringkali merupakan kasus tabrak lari.1 Cluster ini dapat dianggap merepresentasikan tingkat risiko umum yang dihadapi oleh populasi dewasa pengguna jalan dalam aktivitas sehari-hari, termasuk perjalanan komuter, urusan pekerjaan, dan mobilitas rutin lainnya. Keberadaan pelajar usia menengah (16-17 tahun) dalam kelompok ini, terpisah dari kelompok 18-24 tahun yang berisiko lebih tinggi, menunjukkan adanya gradasi risiko bahkan di kalangan remaja dan pemuda.

Sementara itu, Cluster 1: Hati-hati (Risiko Rendah) menunjukkan komposisi usia yang menarik, didominasi oleh dua kelompok ekstrem: anak-anak yang sangat muda (usia 12, 13, dan 15 tahun) dan kelompok lanjut usia (lansia), yaitu usia 54 tahun serta rentang usia 56 hingga 85 tahun.1 Meskipun secara statistik mereka masuk dalam kelompok dengan frekuensi kecelakaan terendah pada data 2014, penyebab kerentanan mereka sangat berbeda. Pada kelompok anak-anak, faktor utama kemungkinan besar adalah kurangnya pengalaman, pemahaman aturan lalu lintas yang belum matang, dan kemampuan fisik serta kognitif yang masih berkembang untuk mengendalikan kendaraan bermotor.1 Sebaliknya, pada kelompok lansia, penurunan fungsi fisik seperti refleks yang melambat, penurunan kemampuan visual atau pendengaran, serta potensi penurunan tingkat konsentrasi dapat menjadi faktor kontributor utama terjadinya kecelakaan.1 Pengelompokan kedua ujung spektrum usia ini dalam satu cluster 'Hati-hati' oleh algoritma mungkin didasarkan pada pola frekuensi atau jenis insiden tertentu yang serupa dalam data 2014, namun penting untuk memahami bahwa akar masalah dan kebutuhan intervensi untuk kedua sub-kelompok ini jelas berbeda.

Keberhasilan metode K-Means dalam membedakan profil risiko berdasarkan usia ini memberikan pemahaman yang jauh lebih bernuansa dibandingkan sekadar menyatakan bahwa "anak muda berisiko tinggi". Analisis ini secara spesifik mengidentifikasi jendela usia kritis (18-24 tahun) sebagai periode puncak bahaya di lingkungan lalu lintas Semarang. Pemisahan yang jelas antara kelompok ini dengan remaja yang lebih muda (di Cluster 2) dan anak-anak (di Cluster 1) menggarisbawahi bahwa risiko tidaklah seragam di seluruh rentang usia muda, melainkan mencapai puncaknya pada masa transisi dari remaja akhir ke dewasa awal. Informasi ini sangat berharga untuk merancang intervensi yang benar-benar terfokus pada kelompok yang paling membutuhkan.

 

Jari Telunjuk Mengarah ke Pengemudi: Faktor Manusia Sebagai Akar Masalah Utama

Salah satu temuan paling konsisten dan menonjol dari analisis data kecelakaan di Semarang ini adalah peran dominan faktor manusia dalam menyebabkan terjadinya insiden. Jari telunjuk statistik dengan tegas mengarah pada perilaku pengguna jalan itu sendiri sebagai akar masalah utama, melintasi semua kelompok usia dan tingkat risiko yang telah diidentifikasi.

Data menunjukkan gambaran yang sangat jelas dan sulit disangkal: di semua tiga cluster – 'Hati-hati', 'Waspada', maupun 'Berbahaya' – penyebab utama kecelakaan secara meyakinkan diatribusikan pada 'Faktor Pengemudi' (Faktor Pengemudi).1 Secara rata-rata, angka ini mencapai 96,57% di seluruh kasus yang dianalisis.1 Ini berarti, lebih dari sembilan puluh enam dari setiap seratus kecelakaan yang tercatat pada tahun 2014 di Semarang disebabkan oleh tindakan atau kelalaian dari pengemudi itu sendiri.

Konsistensi temuan ini terlihat jelas ketika kita melihat persentase di masing-masing cluster hasil analisis ABE:

  • Di Cluster 1 ('Hati-hati', usia sangat muda & lansia): Faktor pengemudi menyumbang 97,48% kecelakaan.1
  • Di Cluster 2 ('Waspada', usia produktif & remaja): Faktor pengemudi menyumbang 94,98% kecelakaan.1
  • Di Cluster 3 ('Berbahaya', usia 18-24 tahun): Faktor pengemudi menyumbang 97,25% kecelakaan.1

Angka-angka yang sangat tinggi dan relatif seragam di semua kelompok ini menggarisbawahi bahwa, terlepas dari usia atau tingkat risiko statistik, perilaku manusialah yang menjadi pemicu utama tragedi di jalan raya Semarang. Kategori 'Faktor Pengemudi' ini, meskipun luas, mencakup berbagai isu yang secara teoritis dibahas dalam literatur keselamatan lalu lintas, seperti yang diulas dalam penelitian ini. Ini bisa berupa pelanggaran aturan (menerobos lampu merah, melawan arus), tindakan tidak hati-hati (kurang waspada, tidak menjaga jarak aman), kondisi fisik pengemudi (kelelahan, mengantuk, pengaruh alkohol), kondisi psikologis (emosi tidak stabil, kurang konsentrasi), hingga keterbatasan dalam waktu reaksi (dikenal sebagai PIEV time: Perception, Identification, Emotion, Volition/Violation).1

Secara khusus, pembahasan dalam penelitian ini mengaitkan kelompok usia 18-24 tahun (Cluster 'Berbahaya') dengan perilaku berisiko spesifik seperti memacu kendaraan dengan kecepatan tinggi, potensi pengaruh minuman beralkohol, dan ketidakmampuan mengendalikan emosi saat berkendara.1 Ini memberikan indikasi kuat mengenai jenis 'Faktor Pengemudi' yang mungkin sangat relevan untuk kelompok usia paling rentan ini.

Sebaliknya, faktor-faktor lain yang sering dianggap sebagai penyebab kecelakaan ternyata memainkan peran yang jauh lebih kecil dalam konteks data Semarang 2014. Faktor Jalan (Faktor Jalan), yang mencakup kondisi seperti permukaan jalan rusak, tikungan tajam, atau tanjakan curam, hanya menyumbang sekitar 1,2% hingga 1,7% kecelakaan di setiap cluster.1 Faktor Lingkungan (Faktor Lingkungan), seperti kondisi cuaca buruk (hujan), penerangan jalan yang kurang memadai, atau pandangan terhalang, kontribusinya bahkan lebih minimal, berkisar antara 0% hingga 0,4%.1 Demikian pula, Faktor Kendaraan (Faktor Kendaraan), yang meliputi masalah teknis seperti rem blong, ban pecah, atau lampu tidak berfungsi, hanya menjadi penyebab pada sekitar 0,8% hingga 3,3% kasus kecelakaan.1

Dominasi ekstrem dari 'Faktor Pengemudi' ini membawa implikasi penting. Hal ini sangat menyarankan bahwa strategi intervensi yang terlalu berfokus pada perbaikan infrastruktur jalan, peningkatan kondisi lingkungan, atau pengetatan standar keselamatan kendaraan, meskipun mungkin tetap diperlukan dan bermanfaat dalam beberapa aspek, kemungkinan besar tidak akan memberikan dampak signifikan dalam menekan angka kecelakaan secara keseluruhan di Semarang jika tidak diimbangi dengan upaya masif yang menargetkan akar masalah utama: perilaku pengemudi. Fokus utama haruslah pada edukasi, sosialisasi, pelatihan, penegakan hukum yang konsisten, dan kampanye perubahan perilaku yang dirancang untuk meningkatkan kesadaran, kehati-hatian, dan kepatuhan pengguna jalan terhadap aturan lalu lintas. Kombinasi antara identifikasi kelompok usia paling berisiko (18-24 tahun) dan dominasi faktor pengemudi semakin memperkuat argumen bahwa intervensi perilaku yang ditargetkan secara khusus pada demografi ini, dengan menangani isu-isu seperti kecepatan, pengendalian emosi, dan potensi pengaruh zat, adalah langkah krusial yang perlu diprioritaskan.

 

Pola Waktu Kecelakaan: Mengapa Jalanan Lebih Berbahaya di Hari Kerja?

Selain mengungkap kelompok usia dan penyebab dominan, analisis data kecelakaan Semarang tahun 2014 juga menyoroti pola waktu yang jelas. Temuan ini menunjukkan bahwa risiko kecelakaan tidak tersebar merata sepanjang minggu, melainkan terkonsentrasi pada periode-periode tertentu, memberikan petunjuk penting kapan kewaspadaan ekstra dibutuhkan di jalan raya.

Secara konsisten di ketiga cluster risiko ('Hati-hati', 'Waspada', dan 'Berbahaya'), kecelakaan lalu lintas paling sering terjadi pada 'Hari Kerja' (Hari Kerja), yaitu periode Senin hingga Jumat.1 Rata-rata, sekitar 67,33% dari seluruh insiden kecelakaan yang dianalisis terjadi pada hari-hari kerja ini.1 Angka ini mengindikasikan bahwa rutinitas harian, terutama perjalanan komuter menuju dan dari tempat kerja atau sekolah, serta aktivitas ekonomi lainnya, merupakan periode paling berisiko di jalanan Semarang.

Pola dominasi hari kerja ini terkonfirmasi ketika melihat persentase spesifik pada setiap cluster hasil analisis ABE 1:

  • Cluster 1 ('Hati-hati'): 67,23% kecelakaan terjadi pada hari kerja.
  • Cluster 2 ('Waspada'): 70,25% kecelakaan terjadi pada hari kerja (angka tertinggi di antara cluster).
  • Cluster 3 ('Berbahaya'): 64,53% kecelakaan terjadi pada hari kerja.

Tingginya angka pada hari kerja ini sejalan dengan denyut nadi Semarang sebagai pusat pemerintahan Provinsi Jawa Tengah serta kawasan perkantoran dan industri yang signifikan.1 Volume kendaraan secara alami memuncak pada jam-jam sibuk pagi hari saat orang berangkat beraktivitas dan sore hari saat mereka pulang. Kepadatan lalu lintas yang tinggi, ditambah dengan potensi tekanan waktu dan kelelahan setelah beraktivitas, menciptakan kondisi yang lebih rawan terjadinya insiden. Fakta bahwa pola ini berlaku untuk semua kelompok risiko menunjukkan bahwa tekanan lalu lintas harian ini berdampak pada semua pengguna jalan, mulai dari anak-anak dan lansia, hingga usia produktif dan kelompok muda yang paling berisiko.

Meskipun hari kerja mendominasi, bukan berarti akhir pekan dan hari libur bebas dari risiko. Analisis data menunjukkan bahwa kecelakaan juga terjadi pada 'Akhir Minggu' (Akhir Minggu), yang dalam penelitian ini didefinisikan sebagai hari Sabtu, serta pada 'Hari Libur' (Hari Libur), yang mencakup hari Minggu dan hari-hari libur nasional.1 Namun, frekuensinya cenderung lebih rendah dibandingkan hari kerja. Berdasarkan hasil analisis ABE, persentase kecelakaan pada akhir minggu (Sabtu) berkisar antara 13,9% hingga 18,7%, sedangkan pada hari libur (Minggu dan libur nasional) berkisar antara 15,9% hingga 17,7% di ketiga cluster.1

Perlu dicatat pula bahwa status Semarang sebagai salah satu tujuan destinasi wisata di Jawa Tengah turut memberikan warna pada pola ini.1 Meskipun frekuensi kecelakaan pada hari libur secara keseluruhan lebih rendah daripada hari kerja, peningkatan aktivitas pariwisata dan perjalanan rekreasi pada periode ini dapat menyebabkan lonjakan kepadatan lalu lintas di rute-rute tertentu atau pada jam-jam tertentu, yang mungkin berkontribusi pada angka kecelakaan yang tetap signifikan.1

Pola temporal ini memberikan wawasan berharga bagi upaya pencegahan. Konsentrasi kecelakaan pada hari kerja menunjukkan perlunya peningkatan kewaspadaan dan mungkin penyesuaian strategi pengaturan lalu lintas atau penegakan hukum selama jam-jam sibuk komuter. Sementara itu, meskipun frekuensinya lebih rendah, risiko pada akhir pekan dan hari libur tidak boleh diabaikan. Karakteristik lalu lintas pada periode ini mungkin berbeda – lebih banyak perjalanan jarak jauh, pengemudi rekreasi yang mungkin kurang familiar dengan rute, atau potensi peningkatan aktivitas malam hari – yang mungkin memerlukan pendekatan pencegahan yang berbeda pula, seperti kampanye keselamatan khusus untuk perjalanan liburan atau peningkatan patroli pada malam akhir pekan. Memahami kapan risiko tertinggi terjadi adalah langkah penting untuk mengalokasikan sumber daya pencegahan secara lebih efektif.

 

Dominasi Roda Dua: Sepeda Motor dalam Pusaran Statistik Kecelakaan

Analisis data kecelakaan lalu lintas Semarang tahun 2014 tidak hanya mengungkap siapa yang paling berisiko dan kapan kecelakaan paling sering terjadi, tetapi juga jenis kendaraan apa yang paling dominan terlibat dalam insiden tersebut. Temuan ini secara tegas menempatkan sepeda motor sebagai fokus utama dalam upaya peningkatan keselamatan di jalan raya kota ini.

Hasil pengelompokan menggunakan K-Means Clustering menunjukkan bahwa Sepeda Motor (Motor) adalah jenis kendaraan yang paling sering terlibat dalam kecelakaan lalu lintas di Semarang, melintasi semua kelompok usia dan tingkat risiko.1 Dominasi ini sangat mencolok, terutama pada kelompok usia yang teridentifikasi paling berbahaya.

Mari kita lihat angka-angka dari hasil analisis ABE 1:

  • Di Cluster 3 ('Berbahaya', usia 18-24 tahun), sepeda motor terlibat dalam 85,02% insiden kecelakaan. Ini berarti, delapan puluh lima dari setiap seratus kecelakaan yang melibatkan kelompok usia muda ini melibatkan setidaknya satu sepeda motor. Angka ini menyoroti kerentanan luar biasa pengendara motor muda di Semarang.
  • Bahkan di kelompok risiko lainnya, keterlibatan sepeda motor masih sangat tinggi. Di Cluster 2 ('Waspada', usia produktif & remaja), sepeda motor terlibat dalam 62,78% kasus.
  • Di Cluster 1 ('Hati-hati', usia sangat muda & lansia), keterlibatan sepeda motor mencapai 65,55%.

Tingginya angka keterlibatan sepeda motor ini, meskipun mengkhawatirkan, sebagian dapat dijelaskan oleh faktor paparan (exposure). Sebagaimana dicatat dalam penelitian dan didukung oleh data Badan Pusat Statistik (BPS) Kota Semarang untuk tahun-tahun sekitar periode studi (2011-2013), populasi sepeda motor memang mendominasi jalanan Semarang, jauh melampaui jumlah jenis kendaraan lainnya seperti mobil penumpang, bus, atau truk.1 Semakin banyak sepeda motor di jalan, secara statistik, semakin besar pula kemungkinan mereka terlibat dalam kecelakaan.

Meskipun sepeda motor mendominasi, jenis kendaraan lain juga turut berkontribusi pada statistik kecelakaan. Mobil penumpang (Mobil Penumpang/Pribadi) menunjukkan keterlibatan yang signifikan, terutama di Cluster 1 ('Hati-hati') dengan angka 26,05%, mungkin mencerminkan penggunaan mobil oleh keluarga yang mengantar anak atau oleh lansia. Di Cluster 2 ('Waspada') dan Cluster 3 ('Berbahaya'), keterlibatan mobil masing-masing sekitar 18,32% dan 9,17%.1

Kendaraan berat seperti truk (Mobil Barang/Truk) dan bus (Bus) juga tercatat terlibat. Menariknya, keterlibatan truk/bus menunjukkan pola yang sedikit berbeda antar cluster. Angka keterlibatannya paling tinggi di Cluster 2 ('Waspada'), mencapai 18,90%, lebih tinggi dibandingkan di Cluster 1 (8,40%) maupun Cluster 3 (5,81%).1 Puncak keterlibatan kendaraan berat di cluster yang mewakili usia produktif dan lalu lintas komuter ini mungkin mengindikasikan adanya risiko interaksi spesifik antara kendaraan komersial besar dengan lalu lintas umum selama jam-jam sibuk atau di rute-rute logistik utama di dalam kota. Ini bisa terkait dengan perbedaan dimensi kendaraan, titik buta (blind spot) yang lebih besar pada truk/bus, atau perbedaan pola pengereman dan akselerasi.

Namun, fokus utama tetap harus pada sepeda motor. Angka keterlibatan yang sangat tinggi, khususnya pada kelompok usia 18-24 tahun yang sudah teridentifikasi sebagai kelompok paling berisiko, menjadikan keselamatan pengendara motor muda sebagai area intervensi paling kritis di Semarang. Upaya pencegahan harus secara khusus menargetkan kelompok ini, mungkin melalui program pelatihan berkendara defensif yang lebih intensif, kampanye kesadaran risiko yang relevan dengan budaya anak muda, penegakan aturan penggunaan helm standar, serta pemeriksaan kelayakan jalan sepeda motor secara berkala. Mengatasi masalah keselamatan sepeda motor adalah kunci untuk membuat perbedaan nyata dalam mengurangi angka kecelakaan dan korban jiwa di jalanan Semarang.

 

Sebuah Catatan Kritis: Memahami Keterbatasan dan Potensi Studi Ini

Meskipun analisis data kecelakaan lalu lintas di Semarang menggunakan metode K-Means Clustering ini memberikan wawasan berharga mengenai pola-pola tersembunyi, penting untuk memahami batasan-batasan yang melekat pada studi ini, sebagaimana juga diakui oleh peneliti sendiri.1 Pemahaman ini membantu kita menempatkan temuan dalam konteks yang tepat dan mengidentifikasi area untuk penelitian atau pengembangan lebih lanjut.

Pertama, ketergantungan pada data resmi adalah batasan utama. Analisis ini sepenuhnya bersandar pada Laporan Tahunan Laka Lantas Polrestabes Semarang tahun 2014.1 Seperti yang telah disinggung sebelumnya, data resmi seringkali hanya mencatat reported accidents, yaitu insiden yang dilaporkan dan ditangani oleh pihak kepolisian.1 Kecelakaan ringan yang diselesaikan secara damai antar pihak, atau insiden tunggal yang tidak menyebabkan kerusakan parah atau cedera serius, kemungkinan besar tidak masuk dalam data ini. Akibatnya, analisis ini mungkin lebih mencerminkan pola kecelakaan yang relatif lebih parah atau jenis insiden tertentu yang cenderung dilaporkan, dan belum tentu mewakili gambaran keseluruhan spektrum kecelakaan di Semarang. Peneliti menyarankan perlunya upaya untuk mencatat lebih banyak kejadian kecelakaan di masa depan untuk meningkatkan akurasi analisis.1

Kedua, tingkat kedalaman atau granularitas data menjadi batasan lain. Variabel yang digunakan dalam analisis, seperti 'Faktor Pengemudi', meskipun terbukti dominan, sifatnya masih sangat umum.1 Kategori ini bisa mencakup berbagai macam perilaku spesifik, mulai dari mengantuk, tidak fokus karena menggunakan ponsel, ugal-ugalan, hingga pengaruh alkohol. Tanpa data yang lebih rinci mengenai jenis kelalaian atau pelanggaran spesifik yang paling sering terjadi, sulit untuk merancang intervensi perilaku yang sangat presisi. Peneliti menyadari hal ini dan menyarankan agar pengumpulan data kecelakaan di masa depan bisa lebih lengkap dan detail.1 Lebih jauh, diusulkan penggunaan teknik analisis lain seperti Textmining pada deskripsi naratif laporan kecelakaan untuk menggali penyebab spesifik secara lebih mendalam di penelitian selanjutnya.1 Ini menunjukkan bahwa K-Means efektif mengidentifikasi siapa dan kapan, tetapi metode lain mungkin diperlukan untuk menjawab mengapa secara lebih rinci.

Ketiga, cakupan temporal dan geografis. Fokus utama analisis adalah data tahun 2014.1 Pola lalu lintas dan kecelakaan dapat berubah seiring waktu karena perkembangan infrastruktur, perubahan demografi, atau tren penggunaan kendaraan. Oleh karena itu, temuan ini merupakan potret kondisi pada tahun 2014 dan memerlukan analisis berkelanjutan untuk memantau tren dari waktu ke waktu. Secara geografis, analisis ini mencakup kecelakaan yang tercatat di wilayah hukum Polrestabes Semarang.1 Metode clustering yang digunakan berfokus pada pengelompokan berdasarkan karakteristik insiden, bukan pada pemetaan lokasi geografis spesifik seperti analisis 'black spot'.1 Variasi tingkat risiko antar kecamatan atau ruas jalan tertentu tidak menjadi fokus utama dalam pendekatan ini.

Meskipun demikian, studi ini memiliki kekuatan dan potensi yang signifikan. Pendekatan berbasis data menggunakan K-Means Clustering berhasil mengungkap pola-pola yang mungkin tidak terlihat melalui analisis statistik deskriptif biasa.1 Lebih penting lagi, ketelitian metodologis yang ditunjukkan melalui pengujian dan pemilihan metode inisialisasi centroid (ABE vs. SRS) memberikan keyakinan yang lebih tinggi terhadap keandalan dan stabilitas cluster yang diidentifikasi.1 Pola usia, penyebab, waktu, dan kendaraan yang ditemukan bukanlah sekadar artefak statistik acak.

Selain itu, salah satu output nyata dari penelitian ini adalah pengembangan purwarupa "Sistem Informasi Analisis Data Kecelakaan" berbasis web.1 Sistem ini tidak hanya berfungsi untuk melakukan perhitungan K-Means, tetapi juga dirancang untuk menampilkan hasil analisis, memvisualisasikan data, dan berpotensi diperbarui dengan data kecelakaan baru.1 Keberadaan sistem ini menunjukkan potensi keberlanjutan dari upaya analisis data kecelakaan, bergerak dari studi satu kali menjadi alat pemantauan dan pendukung keputusan yang dinamis bagi pihak terkait, terutama Polrestabes Semarang.

Memahami keterbatasan ini bukan untuk mengurangi nilai temuan, melainkan untuk mendorong interpretasi yang bijaksana dan mengarahkan langkah selanjutnya. Studi ini telah berhasil meletakkan dasar pemahaman yang kuat mengenai pola risiko kecelakaan di Semarang, sambil secara jujur menunjukkan area mana saja yang memerlukan pendalaman lebih lanjut.

 

Dari Temuan ke Tindakan: Implikasi Nyata untuk Keselamatan Jalan di Semarang

Analisis mendalam terhadap data kecelakaan lalu lintas di Semarang tahun 2014 ini bukan sekadar latihan akademis. Temuan-temuan kunci mengenai kelompok usia paling rentan (18-24 tahun), dominasi mutlak faktor pengemudi, puncak kejadian pada hari kerja, dan tingginya keterlibatan sepeda motor, memberikan peta jalan berbasis bukti yang dapat diterjemahkan menjadi tindakan nyata untuk meningkatkan keselamatan di jalan raya kota ini.

Implikasi paling jelas adalah penajaman fokus intervensi. Alih-alih menyebar sumber daya secara merata, temuan ini memungkinkan pihak berwenang, terutama Polrestabes Semarang, untuk mengalokasikan upaya pencegahan secara lebih efisien dan efektif. Identifikasi kelompok usia 18-24 tahun sebagai cluster 'Berbahaya' 1 berarti program edukasi, kampanye keselamatan, dan bahkan penegakan hukum dapat ditargetkan secara khusus pada demografi ini. Sumber daya patroli lalu lintas, misalnya, dapat lebih difokuskan pada waktu (hari kerja, jam sibuk) dan potensi lokasi (area sekitar kampus, sekolah SMA, pusat keramaian anak muda) yang relevan dengan kelompok ini. Ini jauh lebih efisien daripada kampanye 'keselamatan kaum muda' yang bersifat generik.

Dominasi faktor pengemudi (rata-rata 96,57%) 1 secara tegas mengarahkan prioritas intervensi pada perubahan perilaku. Program edukasi dan kampanye keselamatan harus dirancang secara kreatif dan relevan untuk menyentuh kelompok sasaran, terutama usia 18-24 tahun. Materi kampanye perlu secara eksplisit membahas bahaya perilaku berisiko yang diidentifikasi terkait kelompok ini, seperti mengebut, berkendara di bawah pengaruh emosi atau alkohol, serta pentingnya konsentrasi dan kehati-hatian.1 Platform media sosial, acara kampus, dan program di SMA bisa menjadi kanal efektif untuk menjangkau demografi ini.

Temuan mengenai puncak kecelakaan pada hari kerja 1 memiliki implikasi kebijakan lalu lintas dan penegakan hukum. Mungkin perlu ditinjau kembali pengaturan lalu lintas pada jam-jam sibuk, optimalisasi siklus lampu lalu lintas, atau peningkatan kehadiran petugas di titik-titik rawan kemacetan dan pelanggaran selama periode komuter. Penegakan hukum yang konsisten terhadap pelanggaran umum (seperti menerobos lampu merah, melawan arus, tidak menggunakan helm) yang termasuk dalam 'faktor pengemudi' menjadi sangat krusial, terutama pada hari kerja.

Tingginya keterlibatan sepeda motor, khususnya di kalangan usia 18-24 tahun (85%) 1, menuntut fokus khusus pada keselamatan pengendara roda dua. Ini bisa mencakup program pelatihan berkendara defensif (defensive riding) yang diwajibkan atau diinsentifkan bagi pengendara muda, pengetatan pengawasan terhadap penggunaan helm Standar Nasional Indonesia (SNI), kampanye mengenai pentingnya perawatan rutin sepeda motor (meskipun faktor kendaraan minor, tetap penting), serta mungkin kajian ulang desain infrastruktur jalan untuk lebih mengakomodasi atau melindungi pengendara sepeda motor di titik-titik rawan.

Lebih lanjut, penelitian ini mendorong kolaborasi antar pemangku kepentingan. Polrestabes Semarang, Dinas Perhubungan, institusi pendidikan (SMA dan universitas), sekolah mengemudi, komunitas pengendara motor, dan bahkan orang tua perlu bekerja sama. Data ini menyediakan landasan bersama untuk memahami masalah dan merancang solusi terintegrasi. Universitas dapat dilibatkan dalam penelitian lanjutan atau evaluasi program, sementara sekolah dapat mengintegrasikan materi keselamatan lalu lintas yang relevan dengan temuan ini ke dalam kurikulum atau kegiatan ekstrakurikuler.

Terakhir, pengembangan "Sistem Informasi Analisis Data Kecelakaan" berbasis web sebagai bagian dari penelitian ini 1 menawarkan potensi sebagai alat bantu yang berkelanjutan. Jika terus dikembangkan dan dipelihara dengan data terbaru, sistem ini dapat menjadi dasbor pemantauan tren kecelakaan secara real-time atau periodik bagi Polrestabes. Fitur visualisasi data dapat membantu mengkomunikasikan temuan kepada publik dan pembuat kebijakan secara lebih efektif.1 Kemampuannya untuk mengakomodasi data baru dan menghitung ulang pola 1 memungkinkan adaptasi strategi pencegahan seiring perubahan kondisi lalu lintas di Semarang.

Secara keseluruhan, penelitian ini memberikan kontribusi penting lebih dari sekadar data statistik. Ia menawarkan lensa analitis untuk memahami kompleksitas masalah kecelakaan lalu lintas di Semarang dan mengidentifikasi titik-titik intervensi paling strategis. Jika temuan ini diterapkan secara konsisten dalam kebijakan keselamatan jalan dan program edukasi yang terfokus, ada potensi signifikan untuk menekan angka kecelakaan, terutama di kalangan usia muda yang paling rentan di Semarang. Analisis data ini memberikan peta jalan berbasis bukti untuk menyelamatkan nyawa di jalan raya kota ini, berpotensi mengurangi insiden di kelompok usia 18-24 tahun secara bertahap dalam beberapa tahun ke depan jika diikuti dengan tindakan nyata dan berkelanjutan.

 

Sumber Artikel:

Fajar, M. S. (2015). Analisis kecelakaan lalu lintas jalan raya di Kota Semarang menggunakan metode K-Means Clustering. Institutional Repository of Universitas Negeri Semarang.