Penelitian Ini Mengungkap Rahasia di Balik Krisis Beton Ringan Bertulang Autoklaf (RAAC) – dan Ini yang Harus Anda Ketahui!

Dipublikasikan oleh Hansel

15 September 2025, 15.01

freepik.com

Kisah Awal dari Atap yang Ambruk: Menyingkap Krisis RAAC Global

Ketakutan menyelimuti masyarakat Inggris pada tahun 2023. Atap-atap sekolah dan rumah sakit yang selama puluhan tahun dianggap aman, tiba-tiba dinyatakan berisiko ambruk. Lebih dari 150 institusi terpaksa ditutup mendadak karena otoritas menemukan bahwa struktur atap mereka terbuat dari material yang disebut Reinforced Autoclaved Aerated Concrete (RAAC) atau Beton Ringan Bertulang Autoklaf. Krisis ini bukan sekadar masalah estetika atau retakan kecil. Yang paling mengkhawatirkan adalah risiko kegagalan geser (shear failure) yang terkenal "brittle"—artinya, ia bisa runtuh tanpa memberikan tanda-tanda visual yang jelas sebelumnya. Ketidakpastian dan ketakutan akan keselamatan orang-orang terkasih menjadi narasi utama yang mendorong investigasi mendalam terhadap material konstruksi yang misterius ini.1

RAAC, material beton pracetak yang ringan, dikembangkan di Swedia pada awal abad ke-20.1 Berkat berbagai keunggulannya, seperti isolasi termal yang sangat baik, berat yang jauh lebih ringan, biaya produksi yang lebih rendah, dan dampak lingkungan yang minimal dibandingkan beton konvensional, RAAC menyebar luas di Eropa pada pertengahan 1950-an. Material ini menjadi pilihan favorit untuk dinding, lantai, dan terutama atap, hingga kekhawatiran tentang kinerja strukturalnya mulai muncul pada pertengahan 1990-an.1

Melihat betapa parahnya situasi di Inggris—dengan laporan kegagalan atap sekolah dan rumah sakit, korosi parah, retakan, dan pengelupasan—sebuah pertanyaan besar muncul: mengapa masalah serupa belum pernah (atau belum teridentifikasi) terjadi di Swedia? Sebuah laporan tesis master dari Royal Institute of Technology (KTH) di Swedia, berjudul "Investigation of Reinforced Autoclaved Aerated Concrete Structures," berusaha menyingkap misteri ini. Laporan ini secara sistematis menyelidiki apakah struktur RAAC di Swedia menghadapi risiko serupa dan, jika demikian, apa yang bisa dilakukan untuk mencegahnya.1

 

Mengurai Sifat Material: Mengapa Beton yang "Ringan" Menjadi "Berat"?

Sifat unik RAAC berasal dari proses pembuatannya. RAAC dibuat dari campuran pasir silika (atau serpihan batuan yang dibakar), kapur, air, dan bubuk aluminium. Bubuk aluminium inilah yang menjadi "kunci," bertindak sebagai agen pengembang yang menciptakan jutaan pori-pori udara di seluruh material, menyumbang hingga 80% dari total volume.1 Ini yang membuat RAAC sangat ringan dan memiliki daya insulasi luar biasa. Untuk memahaminya, bayangkan beton konvensional sebagai "batu padat" yang terbuat dari campuran kerikil dan pasir, sedangkan RAAC adalah "spons" yang dipadatkan dengan struktur berpori.1

Perbedaan mendasar ini bisa dirangkum dalam tabel perbandingan berikut, yang menunjukkan mengapa RAAC memiliki kekuatan yang jauh lebih rendah tetapi keunggulan lain yang signifikan.1

Reinforced Autoclaved Aerated Concrete (RAAC) memiliki sifat khas yang membedakannya dari beton konvensional. Dari segi densitas, RAAC jauh lebih ringan, yakni hanya berkisar antara 400 hingga 800 kg/m³, sementara beton konvensional memiliki densitas sekitar 2400 kg/m³. Perbedaannya bisa dianalogikan seperti membandingkan spons dengan batu: RAAC ringan dan berongga, sedangkan beton konvensional padat dan berat.

Dalam hal kekuatan tekan, RAAC umumnya berada pada kisaran 2,5 hingga 7,5 MPa, lebih rendah dibandingkan beton konvensional yang mampu mencapai 6,9 hingga 69 MPa. Secara sederhana, kekuatan RAAC bisa dianalogikan dengan kapur tulis, sedangkan beton konvensional lebih menyerupai batu bata yang kokoh.

Sementara itu, dari sisi porositas, RAAC memiliki tingkat porositas yang sangat tinggi, sekitar 80%, sedangkan beton konvensional cenderung rendah. Perbedaan ini dapat dibayangkan seperti perbandingan material berpori dengan material padat: RAAC memungkinkan lebih banyak ruang kosong di dalam strukturnya, sementara beton konvensional hampir tanpa rongga.

Namun, pori-pori yang sama yang memberikan RAAC keunggulannya juga menjadi sumber kerentanannya yang paling besar. Analisis mendalam menunjukkan bahwa air adalah musuh terberat material ini. Penelitian menemukan bahwa densitas, berat sendiri, dan kekuatan tekan RAAC sangat dipengaruhi oleh jumlah air yang meresap ke dalamnya.1 Dalam kondisi normal, RAAC memiliki kandungan air sekitar 6%, tetapi saat terjadi kebocoran yang parah, material ini bisa menjadi jenuh hingga kandungan airnya mencapai 100%.

Perubahan ini memiliki konsekuensi dramatis. Data perhitungan dari laporan menunjukkan bahwa densitas RAAC dengan kandungan air 100% bisa meningkat hampir dua kali lipat dari kondisi kering.1 Peningkatan berat ini seperti membiarkan atap mobil salju yang ringan tiba-tiba berubah menjadi kolam renang penuh air yang siap runtuh. Bersamaan dengan peningkatan beban yang signifikan, kekuatan tekan RAAC justru menurun drastis. Kekuatannya

bisa berkurang hingga 64% saat beralih dari kondisi kering ke kondisi jenuh.1 Ini membuat material yang tadinya kokoh menjadi "seperti biskuit yang basah dan rapuh."

Meskipun laporan menyimpulkan bahwa risiko kegagalan geser hanya karena infiltrasi air sangat kecil, kombinasi dari peningkatan beban dan penurunan kekuatan ini menjadikannya faktor pemicu utama saat ada kondisi lain yang membebani struktur, seperti genangan air hujan.1

 

Cerita di Balik Keretakan: Titik Lemah yang Tidak Terlihat Mata

Kegagalan struktur RAAC jarang disebabkan oleh satu faktor tunggal. Sering kali, itu adalah hasil dari kombinasi beberapa kelemahan yang saling memperburuk, menciptakan "rantai kegagalan" yang tidak terduga.

Salah satu ancaman paling berbahaya adalah korosi pada baja tulangan. Pada beton konvensional, lingkungan yang sangat basa (pH 12-13) berfungsi sebagai pelindung alami bagi baja. Namun, karena tingginya tingkat porositas RAAC, material ini rentan terhadap proses karbonasi. Karbon dioksida dari udara bereaksi dengan kapur di dalam beton, menurunkan pH-nya dan menghilangkan perlindungan pada baja tulangan. Yang membedakan RAAC adalah bahwa korosi pada material ini tidak selalu memberikan tanda-tanda visual di permukaan seperti beton konvensional.1 Ini terjadi karena produk korosi, yaitu karat, memiliki volume yang lebih besar dan dapat mengisi pori-pori besar RAAC sebelum memberikan tekanan yang cukup untuk menyebabkan pengelupasan atau spalling. Artinya, sebuah atap yang terlihat baik-baik saja dari luar bisa saja mengalami korosi parah yang tersembunyi di dalamnya. Kondisi ini membuat inspeksi visual saja sangat menipu.

Selain itu, masalah beban berlebihan akibat genangan air menjadi faktor signifikan, terutama di Inggris. Laporan ini menunjukkan perbedaan mencolok dalam desain beban salju antara kedua negara. Di Inggris, beban salju standar yang digunakan untuk desain berkisar antara 0,3 hingga 0,85 kN/m², sementara di Swedia, angkanya jauh lebih besar, yaitu 1,0 hingga 5,5 kN/m².1 Atap di Swedia yang dirancang untuk menahan beban salju yang berat secara alami memiliki "cadangan" kekuatan yang jauh lebih besar untuk menahan genangan air hujan, yang menjadi alasan utama mengapa masalah ini lebih sering terlihat di Inggris.1

Temuan lain yang sangat mengkhawatirkan adalah kesalahan pada desain dan pemasangan. Laporan menemukan bahwa beberapa kontraktor melakukan kesalahan fundamental dengan menghitung kapasitas RAAC seolah-olah itu adalah beton konvensional. Mereka menggunakan kekuatan tekan 37 N/mm², padahal RAAC hanya memiliki 3 N/mm².1 Ini adalah perbedaan sebesar 8% yang menunjukkan

ketidakpahaman mendasar antara kedua material. Lebih lanjut, panjang tumpuan (bearing length) yang terlalu pendek pada standar lama (hanya 45 mm) dan praktik memotong elemen RAAC untuk menyesuaikan ukuran dapat menghilangkan tulangan melintang yang berfungsi sebagai angkur.1 Tanpa tulangan angkur ini, panel RAAC menjadi

sangat rentan terhadap kegagalan geser mendadak.1

Penelitian mengenai kegagalan Reinforced Autoclaved Aerated Concrete (RAAC) menunjukkan bahwa ada beberapa penyebab utama yang perlu diwaspadai.

Salah satu faktor paling sering ditemui adalah infiltrasi air. Air yang masuk ke dalam struktur RAAC dapat meningkatkan densitas material sekaligus menurunkan kekuatan tekannya. Kondisi ini makin diperparah dengan siklus beku-cair (freeze-thaw) yang mempercepat degradasi. Gejala visual yang muncul biasanya berupa noda air, retakan, hingga material yang terasa lunak atau kenyal ketika disentuh. Tingkat risikonya tergolong tinggi karena dapat mempercepat kerusakan struktur.

Selain itu, beban berlebihan juga menjadi pemicu kegagalan. Hal ini dapat terjadi akibat genangan air hujan yang lama tertahan di atap atau karena adanya tambahan beban dari proses renovasi. RAAC yang menerima beban berlebihan biasanya menunjukkan tanda berupa defleksi berlebihan pada elemen struktural dan adanya genangan air di permukaan atap. Risiko yang ditimbulkan juga tinggi karena dapat memicu keruntuhan mendadak.

Faktor berikutnya adalah korosi tulangan. Proses karbonasi maupun paparan klorida dapat menyebabkan tulangan baja di dalam RAAC mengalami karat. Dampaknya terlihat pada pengelupasan (spalling) atau retakan yang kadang tidak tampak jelas di permukaan. Tanda noda karat juga sering muncul. Kerusakan akibat korosi tulangan ini digolongkan sebagai kritis karena langsung melemahkan elemen penahan beban utama.

Kegagalan juga bisa muncul dari aspek desain dan pemasangan. Contohnya, panjang tumpuan yang tidak memadai atau pemotongan elemen yang tidak tepat dapat menimbulkan masalah serius. Gejalanya berupa pengelupasan di ujung tumpuan serta retakan geser di area sekitar tumpuan. Risiko dari kesalahan desain dan pemasangan ini juga bersifat kritis karena langsung mengganggu kinerja struktural.

Terakhir, terdapat faktor eksternal yang juga berkontribusi terhadap kerusakan RAAC. Kondensasi dari atap baru, kerusakan akibat aktivitas di atap, atau kondisi lingkungan lainnya bisa mempercepat degradasi material. Gejala visual yang biasanya muncul berupa retakan, noda air, maupun pengelupasan di area tertentu. Tingkat risikonya berada pada kategori sedang hingga tinggi, tergantung seberapa luas kerusakan yang terjadi.

 

Kisah-kisah dari Lapangan: Bukti Nyata dari Teori

Untuk menguji teori-teori ini, laporan mengkaji beberapa kasus nyata di Swedia dan Inggris.

Proyek A: Krisis di Teater Stockholm

Di sebuah teater di Stockholm yang dibangun pada tahun 1966, beberapa elemen atap RAAC ambruk.1 Penyebab utamanya adalah

lapisan kedap air yang rusak akibat pengerukan salju, yang memungkinkan infiltrasi air secara terus-menerus. Investigasi di lokasi menemukan bahwa elemen RAAC yang ambruk telah menjadi lembek dan kenyal karena terendam air.1 Kondisi ini memicu

siklus beku-cair yang menyebabkan retakan dan, pada akhirnya, kegagalan.

Proyek B: Pemantauan yang Mencegah Bencana

Sebuah gedung industri di Gothenburg, Swedia, yang dibangun pada tahun 1977, menjadi subjek studi kasus lain setelah sepotong kecil atapnya jatuh.1 Meskipun tidak ditemukan kebocoran aktif,

noda air lama terlihat, mengindikasikan kerusakan yang terjadi di masa lalu. Inspeksi visual menemukan pengelupasan kecil pada tumpuan elemen atap. Laporan menyimpulkan bahwa meskipun kerusakan minor ini tidak mengancam kapasitas menahan beban secara keseluruhan, ada risiko serpihan beton jatuh, yang dapat membahayakan personel dan peralatan.1 Sebagai solusi sementara,

jaring pengaman dipasang dan kapur diaplikasikan pada tulangan yang terekspos untuk memperlambat korosi.

Proyek C: Beban Tersembunyi dari Atap Baru

Sebuah kasus di Inggris menyoroti faktor eksternal yang tidak terduga.1 Sebuah sekolah di Inggris yang dibangun pada 1960-an mengalami keretakan pada panel atap RAAC-nya setelah atap miring baru dipasang pada tahun 2015. Atap baru ini tidak memiliki ventilasi yang memadai, menyebabkan

kondensasi menumpuk di rangka baja, yang kemudian menetes ke insulasi wol di bawahnya. Air dari insulasi ini akhirnya menetes ke panel RAAC, menambah beban yang tidak terduga dan memicu keretakan pada material.1 Kasus ini adalah contoh nyata bagaimana faktor non-struktural bisa memicu kegagalan struktural.

Proyek D: Inovasi di Bawah Tanah

Di sebuah bangunan hunian di Stockholm yang dibangun pada pertengahan 1960-an, pelat lantai RAAC melengkung secara signifikan.1 Untuk mengatasi defleksi ini, sebuah solusi inovatif diterapkan:

beton ringan hidrofobik yang disebut SENADOHLWC dipompa ke dalam rongga di bawah pelat lantai. Material ini, yang memiliki sifat tidak menarik kelembaban, mengisi seluruh rongga, memberikan dukungan permanen dan menstabilkan pelat yang melengkung.

 

Jalan Menuju Keamanan: Solusi dan Masa Depan yang Lebih Baik

Penelitian ini menyimpulkan bahwa RAAC bukanlah "bom waktu" jika dirawat, dirancang, dan dipasang dengan benar. Sifatnya yang unik dan kerentanannya terhadap kesalahan membuat perawatan dan pemantauan yang ketat menjadi sangat krusial. Jika atap-atap RAAC sudah mengalami kerusakan parah, solusi jangka panjang yang paling signifikan adalah penggantian total dengan material yang berbeda, atau dengan panel RAAC baru yang dipasang sesuai standar modern.1

Namun, sebelum penggantian dilakukan, sejumlah langkah mitigasi sementara dapat diterapkan untuk meminimalisir risiko.1 Ini termasuk

penopangan darurat dengan balok kayu atau baja untuk mendukung atap yang rusak, penambahan panjang tumpuan dengan memasang siku baja, dan penggunaan kapur pada tulangan baja yang terekspos untuk menetralkan pH dan memperlambat laju korosi.1

Dalam upaya memajukan solusi ini, teknologi juga mulai berperan. Akademisi dari Loughborough University telah mengembangkan alat perangkat lunak AI yang dapat mengidentifikasi kerusakan RAAC secara progresif, menyoroti lokasi retakan, dan bahkan memprediksi perkiraan masa pakainya.1 Alat ini terbukti lebih cepat dan efisien dibandingkan inspeksi manual. Namun, laporan ini juga menekankan bahwa

alat AI tidak dimaksudkan untuk menggantikan inspeksi manual, melainkan untuk melengkapinya. Dengan akurasi 95%, verifikasi manusia tetap sangat penting untuk pengambilan keputusan akhir.1

 

Kesimpulan dan Rekomendasi: Mengapa Kita Harus Bertindak Sekarang

Temuan dari penelitian ini menunjukkan bahwa RAAC dapat menjadi bahan konstruksi yang tepat jika dirawat, dipasang, dan dirancang dengan benar. Risiko kegagalan geser akibat infiltrasi air tunggal sangat kecil, dan kemungkinan panjang tumpuan yang terlalu pendek adalah penyebab satu-satunya kegagalan juga tidak mungkin. Namun, yang sering terjadi adalah kegagalan akibat kombinasi faktor: penurunan kekuatan material akibat air, beban berlebihan, korosi tulangan yang tersembunyi, dan kesalahan mendasar pada desain dan pemasangan. Masalah genangan air terbukti menjadi risiko yang lebih besar di Inggris daripada di Swedia karena perbedaan standar beban salju.

Jika tindakan pencegahan seperti inspeksi berkala dan perbaikan lapisan kedap air diterapkan, temuan ini bisa mengurangi risiko dan biaya perbaikan besar-besaran dalam lima tahun ke depan.

Untuk memastikan keselamatan dan keawetan struktur, berikut adalah rekomendasi utama yang dapat diambil:

  • Pentingnya Inspeksi: Struktur RAAC harus diperiksa secara berkala untuk mencari noda air, defleksi berlebihan, dan tanda-tanda korosi. Inspeksi ini harus menyeluruh, tidak hanya mengandalkan tampilan visual.1
  • Standardisasi Desain: Pastikan konstruksi baru mengikuti standar modern, termasuk panjang tumpuan minimum 75 mm dan penempatan tulangan yang tepat yang melampaui tumpuan untuk mencegah kegagalan geser mendadak.1
  • Sistem Drainase yang Efektif: Sistem drainase dan lapisan kedap air harus dipelihara dengan baik untuk mencegah genangan air dan infiltrasi.1

Penelitian ini berfungsi sebagai peringatan dini, terutama di wilayah yang kondisi cuacanya dapat memicu kegagalan RAAC. Penelitian lanjutan di LTH (Lunds Tekniska Högskola) saat ini sedang menguji kapasitas geser dan lentur elemen RAAC dari bangunan lama, yang menunjukkan bahwa investigasi mengenai material unik ini terus berlanjut.1

Sumber Artikel:

Löfman, N., & Molander, V. (2024). Investigation of Reinforced Autoclaved Aerated Concrete Structures.