Penelitian Ini Mengungkap Rahasia di Balik Infrastruktur Sanitasi yang Rusak di Cimahi – dan Mengapa Indonesia Harus Mendesain Ulang Sistem Perkotaan

Dipublikasikan oleh Hansel

20 November 2025, 02.09

unsplash.com

Pendahuluan: Bom Waktu di Jantung Perkotaan Padat

Penyediaan layanan sanitasi domestik yang aman dan andal merupakan prasyarat fundamental bagi kesehatan publik dan target kunci dalam Tujuan Pembangunan Berkelanjutan (SDGs). Namun, bagi Indonesia—terutama di wilayah perkotaan padat yang terus berkembang—tantangan ini belum terselesaikan. Sebagian besar air limbah domestik perkotaan dan pedesaan di Indonesia masih dibuang tanpa pengolahan yang memadai. Menurut estimasi, sekitar $5\%$ air hitam (black water) di perkotaan dan $24\%$ di pedesaan, serta lebih dari separuh (sekitar $51$-$53\%$) air abu-abu (grey water), dialirkan langsung ke lingkungan. Kondisi ini secara langsung berkontribusi pada penurunan kualitas air dan prevalensi penyakit bawaan air, seperti diare.1

Isu sanitasi yang tidak memadai menjadi sangat kritis di kota-kota yang memiliki kepadatan penduduk tinggi, seperti Cimahi, Jawa Barat. Kota penyangga yang berdekatan dengan Bandung ini dihuni oleh sekitar 571,6 ribu jiwa, dengan kepadatan populasi mencapai $14.160 \text{ orang/km}^2$. Kepadatan ini jauh melampaui rata-rata nasional ($1.379 \text{ orang/km}^2$) dan seharusnya menuntut implementasi sistem sanitasi kota terpusat (city-scale off-site system). Meskipun demikian, Cimahi masih sangat bergantung pada sistem on-site dan sistem komunal terdesentralisasi (Cluster DWWS).1

Sebuah studi kasus penting yang dilakukan oleh para peneliti di Institut Teknologi Nasional Bandung memfokuskan pada evaluasi kinerja Cluster DWWS di Hamlet 08 Cimahi, sebuah sistem yang melayani 210 sambungan rumah (HC) menggunakan metode pengolahan biologis anaerobic biofilter. Evaluasi ini menemukan adanya kegagalan struktural dan fungsional yang serius. Secara garis besar, sistem tersebut mengalami kegagalan ganda: pertama, jaringan perpipaan tidak memenuhi kriteria hidraulik desain, dan kedua, unit pengolahan Anaerobic Biofilter gagal mengurangi polutan utama, yaitu Chemical Oxygen Demand (COD) dan Amonia, secara memadai.1

Temuan ini bukan hanya mencerminkan masalah lokal, tetapi menunjukkan tantangan nasional yang lebih besar terkait standar infrastruktur. Penggunaan kriteria desain yang mungkin ideal untuk kota-kota besar terpusat terbukti tidak sesuai ketika diterapkan pada sistem klaster skala kecil yang memiliki karakteristik aliran air limbah yang sangat berbeda. Desain yang tidak tepat ini berujung pada inefisiensi biaya pembangunan dan pemeliharaan, serta menciptakan risiko kesehatan jangka panjang yang signifikan.1

 

Ancaman Ganda di Bawah Tanah: Ketika Pipa Gagal Berfungsi

Evaluasi hidraulik sistem Cluster DWWS di Cimahi, yang menggunakan jaringan pipa PVC berdiameter $150 \text{ mm}$ dengan total panjang $253.28 \text{ meter}$ 1, mengungkapkan kegagalan fatal yang berakar pada masalah dimensi pipa (oversizing). Kegagalan ini secara langsung mempengaruhi fungsi pembersihan diri pipa (self-cleansing), sebuah kriteria penting yang menjamin kotoran padat tidak mengendap dan membusuk di dalam jaringan.

Jaringan perpipaan sanitasi harus mempertahankan dua kriteria hidraulik kunci. Pertama, kecepatan aliran air minimum harus mencapai $0.6 \text{ m/s}$ untuk mencegah padatan mengendap. Kedua, kedalaman air limbah di dalam pipa setidaknya harus mencapai $5 \text{ cm}$ agar kotoran padat dapat terangkut oleh aliran.1

Pelanggaran Kriteria Kecepatan dan Kedalaman

Analisis lapangan menunjukkan bahwa karena diameter pipa $150 \text{ mm}$ yang terpasang terlalu besar untuk debit air limbah yang ada (rata-rata $1.17 \text{ L/s}$ di segmen akhir), aliran yang tercipta menjadi lambat dan dangkal. Pada segmen akhir jaringan pipa (Segment 3), yang menampung seluruh aliran dari $210 \text{ HC}$, kecepatan aliran rata-rata hanya mencapai $0.54 \text{ m/s}$.1 Angka ini berada di bawah batas minimum $0.6 \text{ m/s}$, menunjukkan bahwa sistem ini rentan terhadap pengendapan.

Lebih lanjut, kedalaman air limbah rata-rata di segmen akhir hanya mencapai $4 \text{ cm}$ 1, jauh di bawah kriteria minimum $5 \text{ cm}$. Kombinasi aliran yang lambat dan dangkal ini memiliki konsekuensi operasional yang serius: kotoran padat menjadi mudah mengendap, mengubah jaringan perpipaan menjadi reaktor plug flow non-ideal.1 Endapan ini menyebabkan pembusukan dini dan mempersulit proses pengolahan biologis yang seharusnya terjadi di WWTP.

Kritik para peneliti mengarah pada standar desain. Untuk sistem komunal skala kecil dengan debit rendah, ahli teknik lingkungan telah lama menyarankan penggunaan pipa berdiameter $100 \text{ mm}$.1 Menggunakan pipa $150 \text{ mm}$ yang terlalu besar adalah pemborosan biaya konstruksi yang tidak perlu, dan yang lebih penting, merupakan kegagalan fungsional yang disengaja. Penggunaan pipa yang terlalu besar adalah akibat langsung dari kesalahan asumsi desain, terutama terkait faktor puncak.

Faktor Puncak 4.8: Kegagalan Asumsi Desain yang Melumpuhkan Infrastruktur

Kegagalan hidraulik di Cimahi berawal dari misinterpretasi data aliran. Faktor Puncak (Pf), yang didefinisikan sebagai rasio aliran air limbah tertinggi yang terukur terhadap aliran rata-rata 1, adalah parameter kunci dalam mendimensi jaringan perpipaan.

Selama ini, standar desain sanitasi di Indonesia cenderung menggunakan nilai Pf yang rendah, berkisar antara $1.25$ hingga $1.5$.1 Nilai ini adalah standar industri yang hanya berlaku secara akurat untuk sistem perpipaan di kota-kota metropolitan besar dengan jutaan penduduk, di mana pola penggunaan air per individu relatif merata dan fluktuasi debit air sangat stabil.

Lonjakan Debit Lima Kali Lipat

Penelitian di Cimahi menghasilkan data lapangan yang membongkar kesalahan asumsi ini untuk sistem komunal skala kecil. Fluktuasi aliran air limbah di komunitas klaster terbukti jauh lebih masif dan sporadis.

Temuan kuantitatif menunjukkan bahwa:

  • Di segmen awal jaringan (Segment 1), yang hanya melayani $84 \text{ HC}$, Faktor Puncak maksimum aktual mencapai angka yang mencolok, yaitu $4.81$.1
  • Di segmen akhir, di inlet WWTP yang melayani $210 \text{ HC}$, Pf masih berada di level tinggi, yaitu $2.85$.1

Lonjakan debit hingga $481\%$ di segmen awal ini—hampir lima kali lipat dari asumsi desain yang tipikal—menggambarkan ketidakpastian besar dalam aliran air limbah domestik komunal, terutama selama jam puncak di pagi hari (06.22 hingga 11.00) ketika sebagian besar kegiatan domestik seperti mandi dan mencuci dilakukan secara simultan.1

Untuk memberikan gambaran yang lebih hidup tentang fenomena ini: ketidakmampuan sistem hidraulik ini untuk menyerap lonjakan sebesar $481\%$ seperti upaya menaikkan level baterai smartphone dari $20\%$ ke $70\%$ dalam satu kali proses pengisian yang tidak teratur. Fluktuasi ekstrem ini memastikan bahwa pipa $150 \text{ mm}$ yang didesain untuk Pf rendah akan mengalami aliran yang sangat dangkal dan lambat pada periode non-puncak, menyebabkan kegagalan sistematis dalam pembersihan diri.1

Kritik realistis menunjukkan bahwa data lapangan Pf $4.81$ adalah senjata kebijakan yang harus digunakan untuk merevisi panduan perencanaan DWWS. Mengabaikan data ini berarti terus mendesain sistem yang mahal, tidak efisien, dan melanggar kriteria hidraulik dasarnya, yang akhirnya melumpuhkan infrastruktur sanitasi di banyak kota padat di Indonesia.

 

Biofilter Anaerob: Teknologi Usang yang Melanggar Regulasi Baru

Kinerja unit pengolahan air limbah (WWTP) di Cimahi juga menjadi sorotan utama. Sistem ini menggunakan teknologi anaerobic biofilter 1, yang dibangun sekitar tahun 2010 dan didasarkan pada standar kualitas air limbah yang lebih longgar (Peraturan Menteri Lingkungan Hidup No 112 Tahun 2003).

Dengan berlakunya standar nasional yang lebih ketat pada tahun 2016 (Peraturan Menteri Lingkungan Hidup dan Kehutanan No 68 Tahun 2016), infrastruktur lama ini terbukti gagal total dalam menghadapi tuntutan lingkungan saat ini.

Gagal Total dalam Pengurangan COD

Chemical Oxygen Demand (COD) adalah indikator utama muatan organik yang mencerminkan kebutuhan oksigen untuk mengoksidasi polutan.1 Biofilter anaerob di Cimahi gagal mengurangi COD secara memadai.1

Analisis mengungkapkan bahwa konsentrasi COD rata-rata di efluen (air keluar) WWTP selama jam puncak adalah $210 \text{ mg/L}$. Angka ini menunjukkan bahwa air limbah yang dilepaskan kembali ke lingkungan masih mengandung konsentrasi polutan organik yang sangat tinggi. Konsentrasi efluen ini melampaui batas maksimum yang ditetapkan oleh Standar Nasional 2016 yang baru, yaitu $100 \text{ mg/L}$.1

Dengan kata lain, air yang dikeluarkan oleh WWTP Cimahi memiliki muatan organik lebih dari dua kali lipat batas aman yang ditetapkan pemerintah. Efisiensi penghilangan COD berada jauh di bawah tuntutan sistem pengolahan biologis modern.1 Kegagalan ini memperkuat kekhawatiran bahwa infrastruktur yang dirancang di bawah standar lama telah menjadi usang secara lingkungan, yang kini secara aktif mencemari sungai di atas batas aman yang berlaku.

 

Paradoks Amonia: Ketika Pengolahan Justru Meracuni Lingkungan

Temuan yang paling mengejutkan dan memerlukan perhatian kebijakan adalah perilaku parameter Amonia. Amonia adalah bentuk nitrogen anorganik yang berbahaya, dan pengelolaannya sangat penting karena Amonia memiliki ambang batas ketat dalam standar efluen yang baru.

Para peneliti menemukan bahwa unit biofilter anaerob tidak hanya gagal menghilangkan Amonia, tetapi konsentrasinya

 

Sumber Artikel:

Sururi, M. R., Dirgawati, M., Wiliana, W., Fadlurrohman, F., Hardika, & Widiyati, N. (2023). Performance evaluation of domestic waste water treatment system in urban Indonesia. Case Studies in Chemical and Environmental Engineering, 8, 100507. https://doi.org/10.1016/j.cscce.2023.100507