Manajemen risiko dalam proyek infrastruktur publik bukanlah perkara sederhana. Dalam makalah konferensi yang ditulis oleh Gordon Chirgwin dan Eric Ancich berjudul “Risk Management in Public Infrastructure Projects”, kita diajak menyelami dunia yang sering kali terlupakan: risiko-risiko teknis yang timbul dari kesalahan detail desain dan asumsi statis yang tidak sesuai dengan realitas lapangan. Artikel ini merupakan himpunan studi kasus nyata dari proyek infrastruktur di Australia dan menyuguhkan wawasan penting tentang bagaimana detail kecil dapat berakibat besar dalam jangka panjang.
Pentingnya Risiko Teknik dalam Infrastruktur Publik
Chirgwin dan Ancich membuka diskusi dengan mengkritik pendekatan umum dalam manajemen risiko proyek konstruksi yang sering kali terfokus hanya pada aspek anggaran, keselamatan kerja secara umum, atau dampak lingkungan berskala besar. Namun, realitas menunjukkan bahwa risiko terbesar justru sering bersumber dari hal-hal kecil dalam desain teknik—seperti sambungan las, detail sambungan girder, atau pemilihan jenis baut.
Sebagai contoh nyata, mereka menyebutkan bahwa jembatan jalan raya dirancang untuk bertahan hingga 100 tahun, tetapi perhitungan umur pakai ini sering kali tidak memperhitungkan peningkatan beban kendaraan yang terus berubah seiring waktu akibat lobi industri angkutan barang. Maka, beban aktual di lapangan bisa jauh melebihi asumsi desain awal.
Studi Kasus: Finger Plate Expansion Joint dan Modular Expansion Joint
Salah satu kasus paling menarik yang diangkat dalam paper ini adalah kegagalan sambungan ekspansi tipe finger plate dan modular expansion joints (MEJ). Sambungan jenis finger plate, meski tampak sederhana, ternyata menyimpan risiko laten akibat ketidakmampuan menahan gaya dinamis yang terjadi saat kendaraan lewat.
Penelitian menunjukkan bahwa sambungan baut sering kali mengalami kehilangan ketegangan karena efek longgar (looseness) dan pergeseran akibat deformasi waktu. Bahkan, ketegangan pada baut dapat menghilang karena relaksasi dan pergerakan kecil pada beton jembatan yang tidak terlihat secara kasat mata. Dalam kasus tertentu, sambungan ini bahkan bisa terlepas, menciptakan risiko fatal bagi pengguna jalan.
Pada sambungan MEJ, para peneliti mengungkap bahwa desain tradisional cenderung mengasumsikan gaya yang bersifat statis, padahal kenyataannya beban dinamis dari kendaraan yang melaju menimbulkan efek resonansi dan amplifikasi hingga 4–11 kali lipat. Di Jembatan Pheasants Nest, sambungan MEJ bahkan mengalami retak karena beban dinamis yang tidak diperhitungkan. Biaya penggantian sambungan ini mencapai $4 juta AUD, sebagian besar untuk pengelolaan lalu lintas selama pekerjaan berlangsung.
Kasus Anzac Bridge: Kegagalan Berulang karena Retainer Springs
Anzac Bridge di Sydney merupakan jembatan kabel dengan tujuh lajur lalu lintas. Dari awal pengoperasiannya pada tahun 1996, jembatan ini mengalami masalah kebisingan dan kerusakan pada bantalan dan retainer spring. Investigasi mengungkap bahwa sambungan ekspansi mengalami gaya dinamis tinggi yang menyebabkan keausan dan perpindahan komponen, bahkan memicu retakan pada las-lasan.
Penelitian lanjutan menggunakan simulasi komputer dan pengukuran strain gauge mengungkap bahwa gaya yang diterima sambungan dapat meningkat secara signifikan apabila frekuensi putaran roda kendaraan sejalan dengan frekuensi alami struktur sambungan. Amplifikasi dinamis mencapai 11 kali lipat dari beban statis. Biaya rehabilitasi sistem sambungan ini sekitar $250 ribu AUD. Namun, jika desain awal telah mempertimbangkan bantalan berperedam tinggi, biayanya hanya sekitar $10 ribu AUD. Perbaikan ini berhasil menurunkan kebisingan hingga 3 dB dan memperpanjang usia pakai dari di bawah 5 tahun menjadi lebih dari 50 tahun.
Mooney Mooney dan Karuah Bridges: Risiko Retak Struktural
Pada Jembatan Mooney Mooney, sebuah pusat lalu lintas penting antara Sydney dan Newcastle, sambungan ekspansi mengalami kegagalan yang nyaris menyebabkan kecelakaan. Sebuah centerbeam terangkat karena retakan pada sambungan las, dan hanya tertahan oleh pelat pelindung sisi jalan. Dengan kecepatan lalu lintas mencapai 140 km/jam, kerusakan lebih lanjut dapat menyebabkan kecelakaan fatal. Pemeriksaan sinar-X mengungkap lebih banyak retakan, dan biaya penggantian sambungan mencapai $7 juta AUD.
Sementara itu, di Jembatan Karuah, masalah utama adalah pada prosedur pengelasan yang buruk—kurangnya pemanasan awal dan proses pendinginan pasca-pengelasan menyebabkan zona yang sangat rentan terhadap retak. Meskipun pengujian awal menyatakan desain valid, kegagalan dalam pelaksanaan tetap menyebabkan kebutuhan penggantian elemen struktur.
Sambungan Stringer ke Girder: Bahaya dari Detail yang Terlewat
Sambungan antara stringer dan girder menjadi perhatian utama dalam beberapa jembatan tua. Pada jembatan seperti Kempsey dan Macksville, sambungan yang dirancang secara statis ternyata mengalami beban dinamis yang melebihi kapasitas desain. Retak pada sambungan, pecahnya baut dan paku keling, serta kegagalan las umum terjadi, sering kali tidak terdeteksi dalam inspeksi rutin.
Penelitian menunjukkan bahwa peningkatan beban kendaraan menyebabkan beban siklik tinggi pada daerah cope (lekukan ujung balok), terutama jika sambungan dilas tanpa prosedur pelepasan tegangan yang benar. Solusi yang diusulkan adalah penggunaan peredam gaya seperti Belleville washers untuk memberikan fleksibilitas tambahan dan mengurangi risiko keretakan.
Kasus Fitzgerald Bridge: Splice Joint di Truss yang Rentan
Fitzgerald Bridge di Aberdeen menghadapi masalah unik pada sambungan las splice mid-span. Ketika jalan raya ini diusulkan untuk peningkatan kapasitas kendaraan hingga 68 ton, investigasi mengungkap bahwa dinamika struktur telah menyebabkan tegangan jauh di atas batas desain. Umur sisa dari sambungan las diperkirakan hanya sekitar 10 tahun jika digunakan untuk dua jalur lalu lintas berat. Karena biaya perbaikan yang sangat tinggi dan potensi risiko keselamatan, solusi akhir adalah mengganti jembatan sepenuhnya.
Pelajaran Strategis dari Investigasi Selama Satu Dekade
Dari semua studi kasus ini, dapat disimpulkan bahwa banyak kegagalan infrastruktur tidak berasal dari kesalahan besar dalam perencanaan makro, melainkan dari kegagalan memahami perilaku elemen mikro secara realistis. Beban dinamis, frekuensi alami struktur, desain sambungan, dan teknik pengelasan menjadi elemen-elemen kritis yang jika diabaikan, berisiko mengancam keselamatan publik dan menyebabkan kerugian ekonomi besar.
Makalah ini juga memberikan contoh positif dari bagaimana manajemen infrastruktur publik di Australia merespons temuan-temuan teknis ini dengan merevisi standar desain seperti RTA B316 dan AS1554.5 serta menerapkan inspeksi ketat dan kebijakan pemeliharaan berbasis risiko.
Kesimpulan
Makalah karya Chirgwin dan Ancich ini adalah pengingat kuat bahwa dalam infrastruktur publik, kegagalan besar sering kali bermula dari detail kecil. Desain yang mengabaikan perilaku dinamis, asumsi statis yang keliru, dan praktik pengelasan yang tidak tepat telah terbukti menjadi pemicu utama kerusakan struktural. Mengadopsi pendekatan berbasis risiko yang lebih mendalam, meningkatkan kesadaran terhadap perilaku aktual struktur, serta memperkuat pengawasan teknik merupakan langkah yang tidak hanya menghemat biaya jangka panjang, tetapi juga menyelamatkan nyawa.
Sebagai pembaca modern dan pengambil kebijakan, kita diajak untuk tidak lagi memandang manajemen risiko sebagai formalitas administratif, tetapi sebagai inti dari keberlanjutan infrastruktur publik yang aman, efisien, dan tahan masa depan.
Sumber asli artikel:
Chirgwin, G., & Ancich, E. (2012). Risk Management in Public Infrastructure Projects. Proc. Risk Engineering Society Conference – RISK 2012, Engineers Australia, Newcastle, NSW, Australia.