Proses Percetakan 3D

Dipublikasikan oleh Muhammad Ilham Maulana

07 Mei 2024, 08.22

Sumber: freepik.com

Pencetakan 3D atau manufaktur aditif adalah pembuatan objek tiga dimensi dari model CAD atau model 3D digital. Hal ini dapat dilakukan dalam berbagai proses di mana bahan disimpan, dilebur atau dipadatkan di bawah kendali komputer, dengan bahan yang ditambahkan bersama (seperti plastik, cairan atau butiran bubuk yang menyatu), biasanya berlapis-lapis.

Pada tahun 1980-an, teknik pencetakan 3D dianggap hanya cocok untuk produksi prototipe fungsional atau estetika, dan istilah yang lebih tepat untuk itu pada saat itu adalah pembuatan prototipe cepat. Pada tahun 2019, presisi, pengulangan, dan jangkauan material pencetakan 3D telah meningkat hingga beberapa proses pencetakan 3D dianggap layak sebagai teknologi produksi industri; dalam konteks ini, istilah manufaktur aditif dapat digunakan secara sinonim dengan pencetakan 3D.

Salah satu keunggulan utama pencetakan 3D adalah kemampuannya untuk menghasilkan bentuk atau geometri yang sangat kompleks yang tidak mungkin dibuat dengan tangan, termasuk bagian berongga atau bagian dengan struktur rangka internal untuk mengurangi berat sekaligus mengurangi limbah material. Pemodelan deposisi leburan (FDM), yang menggunakan filamen kontinu dari bahan termoplastik, adalah proses pencetakan 3D yang paling umum digunakan pada tahun 2020.

Terminologi

Istilah umum additive manufacturing (AM) menjadi populer pada tahun 2000-an, terinspirasi oleh tema material yang ditambahkan bersama (dengan berbagai cara). Sebaliknya, istilah manufaktur subtraktif muncul sebagai singkatan untuk keluarga besar proses pemesinan dengan penghilangan material sebagai proses yang umum. Istilah pencetakan 3D masih mengacu hanya pada teknologi polimer di sebagian besar pikiran, dan istilah AM lebih cenderung digunakan dalam konteks pengerjaan logam dan produksi komponen penggunaan akhir daripada di antara penggemar polimer, inkjet, atau stereolitografi.

Pada awal tahun 2010-an, istilah pencetakan 3D dan manufaktur aditif mengalami evolusi makna di mana keduanya merupakan istilah payung alternatif untuk teknologi aditif, yang satu digunakan dalam bahasa populer oleh komunitas pembuat konsumen dan media, dan yang lainnya digunakan secara lebih formal oleh produsen komponen penggunaan akhir industri, produsen mesin, dan organisasi standar teknis global. Hingga saat ini, istilah pencetakan 3D telah dikaitkan dengan mesin dengan harga atau kemampuan yang rendah. Pencetakan 3D dan manufaktur aditif mencerminkan bahwa teknologi ini memiliki kesamaan dalam hal penambahan atau penggabungan bahan di seluruh amplop kerja 3D di bawah kendali otomatis. Peter Zelinski, pemimpin redaksi majalah Additive Manufacturing, menunjukkan pada tahun 2017 bahwa istilah-istilah tersebut masih sering disinonimkan dalam penggunaan sehari-hari, tetapi beberapa pakar industri manufaktur mencoba membuat perbedaan di mana manufaktur aditif terdiri dari pencetakan 3D ditambah teknologi lain atau aspek lain dari proses manufaktur.

Istilah lain yang telah digunakan sebagai sinonim atau hipernim termasuk manufaktur desktop, manufaktur cepat (sebagai penerus logis dari tingkat produksi dari pembuatan prototipe cepat), dan manufaktur sesuai permintaan (yang menggemakan pencetakan sesuai permintaan dalam pengertian pencetakan 2D). Fakta bahwa penerapan kata sifat rapid dan on-demand pada kata benda manufaktur adalah hal yang baru pada tahun 2000-an mengungkapkan model mental yang telah lama berlaku di era industri sebelumnya, di mana hampir semua produksi manufaktur melibatkan waktu tunggu yang lama untuk pengembangan perkakas yang melelahkan.

Saat ini, istilah subtraktif tidak menggantikan istilah pemesinan, melainkan melengkapinya ketika istilah yang mencakup metode pemindahan diperlukan. Agile tooling adalah penggunaan cara modular untuk mendesain perkakas yang diproduksi dengan metode manufaktur aditif atau pencetakan 3D untuk memungkinkan pembuatan prototipe yang cepat dan respons terhadap kebutuhan perkakas dan perlengkapan. Perkakas tangkas menggunakan metode yang hemat biaya dan berkualitas tinggi untuk merespons kebutuhan pelanggan dan pasar dengan cepat, serta dapat digunakan dalam pembentukan hidro, pencetakan, pencetakan injeksi, dan proses manufaktur lainnya.

Sejarah singkat

Konsep pencetakan 3D sudah ada sejak pertengahan abad ke-20, yang digambarkan dalam karya-karya fiksi ilmiah. Namun, baru pada tahun 1980-an teknologi manufaktur aditif awal mulai dikembangkan. Pada tahun 1981, Hideo Kodama dari Jepang mematenkan plotter XYZ, salah satu metode aditif pertama untuk membuat model 3D dari polimer. Sayangnya, penemuan ini hanya mendapat sedikit perhatian. Sementara itu di Amerika, tiga insinyur mengajukan paten yang berkaitan dengan proses stereolitografi pada tahun 1984.

Tahun 1988 menandai tonggak sejarah dengan munculnya pemodelan deposisi leburan atau FDM, yang dikomersialkan oleh Stratasys pada tahun 1992. Meskipun demikian, printer 3D masih sangat mahal, dengan harga ratusan ribu dolar. Pada tahun 2000-an, printer mulai dieksplorasi untuk pemodelan dan pengujian, terutama di bidang arsitektur dan medis. Namun, baru pada sekitar tahun 2010, pencetakan 3D merambah dunia manufaktur untuk produksi komponen logam. Salah satu aplikasinya adalah di industri penerbangan, untuk menghasilkan komponen yang hemat bahan bakar dan bentuk yang kompleks.

Seiring dengan menurunnya biaya peralatan, printer 3D menjadi lebih terjangkau bagi masyarakat umum. Pada tahun 2020, mesin berkualitas dapat diperoleh dengan harga di bawah $200. Bahkan pada tahun 2024, sebuah printer raksasa setinggi 29 meter akan diluncurkan di Universitas Maine. Apa yang dulunya merupakan pencetakan genggam sekarang menjadi pencetakan 3D, membuka peluang baru di seluruh industri dan kehidupan sehari-hari.

Manfaat pencetakan 3D

Manufaktur aditif atau pencetakan 3D dengan cepat menjadi semakin penting dalam bidang teknik karena banyak manfaatnya. Visi pencetakan 3D adalah kebebasan desain, individualisasi, desentralisasi, dan menjalankan proses yang sebelumnya tidak mungkin dilakukan dengan metode alternatif. Beberapa manfaat ini termasuk memungkinkan pembuatan prototipe yang lebih cepat, mengurangi biaya produksi, meningkatkan penyesuaian produk, dan meningkatkan kualitas produk.

Selain itu, kemampuan pencetakan 3D telah berkembang di luar manufaktur tradisional, seperti konstruksi ringan, atau perbaikan dan pemeliharaan dengan aplikasi dalam prostetik, bioprinting, industri makanan, pembuatan roket, desain dan seni, dan sistem energi terbarukan. Teknologi pencetakan 3D dapat digunakan untuk membuat sistem penyimpanan energi baterai, yang sangat penting untuk pembangkitan dan distribusi energi yang berkelanjutan.

Manfaat lain dari pencetakan 3D adalah kemampuan teknologi ini untuk menghasilkan geometri yang rumit dengan presisi dan akurasi yang tinggi. Hal ini sangat relevan di bidang rekayasa gelombang mikro, di mana pencetakan 3D dapat digunakan untuk memproduksi komponen dengan sifat unik yang sulit dicapai dengan menggunakan metode manufaktur tradisional.

Prinsip-prinsip umum

Pemodelan

Model yang dapat dicetak 3D dapat dibuat dengan paket desain berbantuan komputer (CAD), melalui pemindai 3D, atau dengan kamera digital biasa dan perangkat lunak fotogrametri. Model cetak 3D yang dibuat dengan CAD menghasilkan kesalahan yang relatif lebih sedikit daripada metode lainnya. Kesalahan pada model cetak 3D dapat diidentifikasi dan dikoreksi sebelum dicetak. Proses pemodelan manual dalam menyiapkan data geometris untuk grafik komputer 3D mirip dengan seni plastik seperti memahat. Pemindaian 3D adalah proses pengumpulan data digital tentang bentuk dan tampilan objek nyata, dan membuat model digital berdasarkan data tersebut.

Model CAD dapat disimpan dalam format file stereolithography (STL), format file CAD de facto untuk manufaktur aditif yang menyimpan data berdasarkan triangulasi permukaan model CAD. STL tidak dirancang untuk manufaktur aditif karena menghasilkan ukuran file yang besar dari bagian yang dioptimalkan untuk topologi dan struktur kisi karena banyaknya permukaan yang terlibat. Format file CAD yang lebih baru, format file manufaktur aditif (AMF), diperkenalkan pada tahun 2011 untuk mengatasi masalah ini. Format ini menyimpan informasi dengan menggunakan triangulasi lengkung.

Pencetakan

Sebelum mencetak model 3D dari file STL, file tersebut harus diperiksa terlebih dahulu apakah ada kesalahan. Sebagian besar aplikasi CAD menghasilkan kesalahan pada file STL keluaran, dari jenis berikut ini:

  • lubang
  • permukaan yang tidak normal
  • persimpangan sendiri
  • cangkang kebisingan
  • kesalahan bermacam-macam
  • masalah overhang

Sebuah langkah dalam pembuatan STL yang dikenal sebagai "perbaikan" memperbaiki masalah-masalah tersebut pada model asli. Umumnya, STL yang dihasilkan dari model yang diperoleh melalui pemindaian 3D sering kali memiliki lebih banyak kesalahan tersebut karena pemindaian 3D sering kali dilakukan melalui akuisisi/pemetaan titik ke titik. Rekonstruksi 3D sering kali mengandung kesalahan.

Setelah selesai, file STL perlu diproses oleh perangkat lunak yang disebut "slicer", yang mengubah model menjadi serangkaian lapisan tipis dan menghasilkan file G-code yang berisi instruksi yang disesuaikan dengan jenis printer 3D tertentu (printer FDM). File G-code ini kemudian dapat dicetak dengan perangkat lunak klien pencetakan 3D (yang memuat kode G dan menggunakannya untuk menginstruksikan printer 3D selama proses pencetakan 3D).

Resolusi printer menggambarkan ketebalan lapisan dan resolusi XY dalam titik per inci (dpi) atau mikrometer (μm). Ketebalan lapisan yang umum adalah sekitar 100 μm (250 dpi), meskipun beberapa mesin dapat mencetak lapisan setipis 16 μm (1.600 dpi). Resolusi X-Y sebanding dengan printer laser. Partikel-partikel (titik-titik 3D) berdiameter sekitar 0,01 hingga 0,1 μm (2.540.000 hingga 250.000 DPI). Untuk resolusi printer tersebut, dengan menetapkan resolusi mesh 0,01-0,03 mm dan panjang kord ≤ 0,016 mm akan menghasilkan file output STL yang optimal untuk file input model yang diberikan. Dengan menetapkan resolusi yang lebih tinggi, akan menghasilkan file yang lebih besar tanpa peningkatan kualitas cetak.

Konstruksi model dengan metode kontemporer dapat memakan waktu mulai dari beberapa jam hingga beberapa hari, tergantung pada metode yang digunakan dan ukuran serta kerumitan model. Sistem aditif biasanya dapat mengurangi waktu ini menjadi beberapa jam, meskipun sangat bervariasi, tergantung pada jenis mesin yang digunakan dan ukuran serta jumlah model yang diproduksi secara bersamaan.

Proses dan printer

ISO/ASTM52900-15 mendefinisikan tujuh kategori proses manufaktur aditif (AM) dalam maknanya. Mereka adalah

  • Fotopolimerisasi tong
  • Pengaliran material
  • Pengaliran pengikat
  • Fusi unggun serbuk
  • Ekstrusi material
  • Deposisi energi terarah
  • Laminasi lembaran

Perbedaan utama antara proses-proses tersebut adalah dalam hal cara pengendapan lapisan untuk membuat komponen dan bahan yang digunakan. Setiap metode memiliki kelebihan dan kekurangannya masing-masing, itulah sebabnya beberapa perusahaan menawarkan pilihan bubuk dan polimer untuk bahan yang digunakan untuk membuat objek. Perusahaan lain terkadang menggunakan kertas bisnis standar yang tersedia di pasaran sebagai bahan pembuatan untuk menghasilkan prototipe yang tahan lama. Pertimbangan utama dalam memilih mesin umumnya adalah kecepatan, biaya printer 3D, prototipe yang dicetak, pilihan dan biaya bahan, dan kemampuan warna. Printer yang bekerja secara langsung dengan logam umumnya mahal. Namun demikian, printer yang lebih murah bisa digunakan untuk membuat cetakan, yang kemudian digunakan untuk membuat komponen logam."

Aplikasi

Pencetakan 3D atau manufaktur aditif telah digunakan di sektor manufaktur, medis, industri, dan sosiokultural (misalnya warisan budaya) untuk menciptakan teknologi komersial yang sukses. Baru-baru ini, pencetakan 3D juga telah digunakan di sektor kemanusiaan dan pembangunan untuk memproduksi berbagai barang medis, prostetik, suku cadang, dan perbaikan. Aplikasi paling awal dari manufaktur aditif adalah di bagian ujung ruang perkakas dari spektrum manufaktur. Misalnya, pembuatan prototipe cepat adalah salah satu varian aditif yang paling awal, dan misinya adalah untuk mengurangi waktu tunggu dan biaya pengembangan prototipe suku cadang dan perangkat baru, yang sebelumnya hanya dilakukan dengan metode ruang perkakas subtraktif seperti penggilingan, pembubutan, dan penggerindaan presisi CNC. Pada tahun 2010-an, manufaktur aditif memasuki produksi ke tingkat yang jauh lebih besar.


Disadur dari: en.wikipedia.org