Human Reliability Analysis dalam Keselamatan Nuklir

Dipublikasikan oleh Ririn Khoiriyah Ardianti

24 April 2025, 12.58

pexels.com

Pendahuluan: Tantangan Baru dalam Sistem Kelistrikan Modern

Dalam beberapa dekade terakhir, transisi energi global semakin mengarah pada pemanfaatan energi terbarukan seperti angin dan surya. Meskipun ramah lingkungan, integrasi energi terbarukan ini menimbulkan tantangan besar dalam menjaga keandalan sistem kelistrikan. Paper "Review and Classification of Reliability Indicators for Power Systems with a High Share of Renewable Energy Sources" karya Evelyn Heylen, Geert Deconinck, dan Dirk Van Hertem dari KU Leuven membahas urgensi perubahan paradigma dalam manajemen keandalan sistem kelistrikan. Resensi ini akan mengeksplorasi metode klasifikasi indikator keandalan yang diusulkan, menyoroti temuan utama, dan mengaitkannya dengan tren industri serta tantangan praktis di lapangan.

Potensi Dampak Ekonomi dan Lingkungan

Selain aspek teknis, ketidakandalan sistem kelistrikan juga berdampak besar pada ekonomi dan lingkungan. Gangguan listrik yang berulang dapat memicu kerugian finansial di sektor industri dan bisnis, terutama pada negara-negara dengan ketergantungan tinggi pada energi terbarukan. Sebagai contoh, pemadaman listrik besar di California pada tahun 2020 menyebabkan kerugian lebih dari $2 miliar, sebagian besar karena ketidakmampuan jaringan mengelola beban puncak saat energi surya menurun menjelang malam.

Dari sisi lingkungan, integrasi energi terbarukan yang kurang optimal memicu kebutuhan penggunaan pembangkit listrik cadangan berbahan bakar fosil, yang justru meningkatkan emisi karbon. Oleh karena itu, pengembangan indikator keandalan yang lebih adaptif juga memiliki dampak besar dalam mempercepat transisi energi bersih.

Studi Kasus Tambahan: Jerman dan Australia

Untuk memperkuat analisis, mari kita lihat contoh dari dua negara pemimpin transisi energi terbarukan: Jerman dan Australia.

  • Jerman: Jerman memiliki pangsa energi terbarukan sebesar 46% pada 2022. Mereka menerapkan System Average Interruption Duration Index (SAIDI) untuk memantau durasi gangguan, tetapi indeks ini belum mampu memprediksi gangguan akibat fluktuasi energi angin. Paper ini menyarankan pengembangan indikator probabilistik yang lebih sensitif terhadap perubahan cuaca.
  • Australia: Dengan penetrasi energi surya rooftop yang tinggi, Australia menghadapi masalah stabilitas frekuensi. System Strength Indicator (SSI) diterapkan untuk memantau ketahanan jaringan. Namun, indikator ini masih deterministik dan gagal mendeteksi risiko sistem saat energi surya turun drastis di siang hari. 

Menyongsong Masa Depan dengan Teknologi Cerdas

Integrasi teknologi seperti kecerdasan buatan (AI) dan machine learning (ML) semakin menjadi kebutuhan mendesak dalam pengelolaan keandalan sistem kelistrikan. Sistem berbasis AI dapat menganalisis pola historis gangguan, memprediksi skenario risiko, dan memberikan rekomendasi tindakan mitigasi secara real-time. Teknologi ini dapat dikombinasikan dengan sensor IoT yang memantau stabilitas jaringan di berbagai titik untuk meningkatkan akurasi data.

Misalnya, National Grid UK kini mengembangkan sistem berbasis AI yang mampu merespons gangguan dalam hitungan detik dengan mengalihkan suplai daya dari pembangkit energi terbarukan terdekat. Langkah ini mengurangi durasi pemadaman hingga 30%.

Peran Kebijakan dan Regulasi dalam Mendukung Indikator Keandalan

Teknologi saja tidak cukup. Diperlukan dukungan kebijakan yang lebih progresif untuk memastikan keandalan sistem tetap terjaga di tengah meningkatnya penetrasi energi terbarukan. Beberapa negara, seperti Denmark dan Belanda, sudah mulai menerapkan kebijakan Dynamic Reserve Capacity, yaitu cadangan daya fleksibel yang diaktifkan otomatis saat ada gangguan energi terbarukan.

Pemerintah juga dapat mengadopsi Performance-Based Regulation (PBR), yaitu sistem insentif bagi operator jaringan yang berhasil menjaga keandalan sistem sambil tetap mendorong integrasi energi bersih. Operator yang berhasil mempertahankan stabilitas dan menekan gangguan akan mendapatkan insentif finansial, sedangkan yang gagal dikenakan penalti.

Kolaborasi Industri dan Akademisi untuk Inovasi Indikator Baru

Selain teknologi dan regulasi, inovasi dalam pengembangan indikator keandalan juga memerlukan kolaborasi erat antara industri dan akademisi. Universitas dan lembaga riset dapat membantu menciptakan model prediktif baru, sementara industri menyediakan data dan pengalaman lapangan.

Contoh sukses dari kolaborasi ini adalah proyek Energy Smart Borders di Uni Eropa. Proyek ini menggabungkan riset akademik dengan partisipasi perusahaan energi besar seperti Siemens dan EDF Energy untuk menciptakan indikator baru yang mengukur ketahanan jaringan lintas negara di tengah lonjakan pemanfaatan energi terbarukan.

Kesimpulan: Menuju Sistem Kelistrikan yang Lebih Tangguh dan Adaptif

Paper ini memberikan landasan yang kuat untuk memahami kompleksitas indikator keandalan pada sistem kelistrikan modern. Klasifikasi indikator yang lebih terstruktur dan transparan membantu mengidentifikasi celah dan kekurangan yang perlu diatasi. Dengan pendekatan yang lebih fleksibel, didukung teknologi modern, indikator probabilistik, serta integrasi AI dan IoT, sistem kelistrikan masa depan bisa lebih tangguh menghadapi variabilitas energi terbarukan.

Dukungan regulasi, insentif berbasis performa, dan kolaborasi antara akademisi dan industri menjadi kunci mewujudkan jaringan listrik yang andal, bersih, dan adaptif. Sistem kelistrikan di masa depan bukan hanya harus kuat secara teknis, tetapi juga cerdas dan responsif terhadap dinamika energi yang terus berkembang.

 

Sumber Utama:
OECD Nuclear Energy Agency. (2004). Human Reliability Analysis in Probabilistic Safety Assessment for Nuclear Power Plants. CSNI Technical Opinion Papers No. 4.
Tersedia di: https://www.oecd-nea.org/jcms/pl_14278/human-reliability-analysis-in-probabilistic-safety-assessment-for-nuclear-power-plants