Terobosan AI di Dunia Manufaktur Logam

Dipublikasikan oleh Viskha Dwi Marcella Nanda

22 April 2025, 08.24

pixabay.com

Pendahuluan: Split Defect Kecil, Dampak Besar

Dalam proses manufaktur logam seperti stamping, split defect atau lelehan akibat tekanan berlebih menjadi momok yang jarang terlihat namun sangat merugikan. Meski hanya muncul pada 1–5% komponen, jenis cacat ini tidak bisa diperbaiki dan berujung pada pembuangan produk, menimbulkan kerugian material dan waktu. Masalah makin pelik karena cacat ini sering tak terdeteksi oleh mata manusia, terlebih saat permukaan logam memantulkan cahaya atau tertutup oli industri.

Di sinilah teknologi intervensi, seperti yang dikembangkan Aru Ranjan Singh dan timnya, memainkan peran vital: menggunakan citra sintetis untuk melatih model deteksi cacat berbasis deep learning dengan presisi tinggi.

 

Tantangan: Kelangkaan Data dan Keterbatasan Model

Deteksi berbasis AI membutuhkan ribuan data. Namun, karena split defect sangat jarang terjadi, tidak tersedia cukup data untuk melatih model deep learning secara optimal. Beberapa upaya umum untuk mengatasi ini seperti pretraining pada dataset lain atau menggunakan augmentasi sederhana (seperti rotasi dan flipping) masih belum memadai, karena tidak menyelesaikan masalah inti: kurangnya variasi tekstur, distribusi, dan pencahayaan cacat nyata.

 

Solusi Cerdas: Gabungan Simulasi Fisik dan Sintesis Grafis

Singh dan tim menciptakan pendekatan hybrid. Mereka memulai dengan simulasi berbasis fisika—menggunakan metode elemen hingga (Finite Element Method) untuk memperkirakan titik lemah pada logam berdasarkan distribusi regangan dan Forming Limit Curve (FLC). Dari sini dihasilkan geometri tiga dimensi realistis yang menunjukkan kemungkinan besar lokasi split defect.

Setelah lokasi ditentukan, detail cacat nyata dari sampel fisik dikumpulkan dan dipetakan ke model 3D tersebut menggunakan teknik bump mapping. Hasil akhirnya adalah gambar sintetis fotorealistik yang memperhitungkan pencahayaan, pantulan, tekstur permukaan logam, bahkan ketidaksempurnaan seperti sidik jari atau goresan.

 

Studi Kasus: Deteksi Split pada Komponen Nakajima

Untuk pengujian, peneliti menggunakan komponen uji berdasarkan geometri Nakajima, standar dalam pengujian kemampuan formasi logam. Mereka hanya memerlukan 10 bagian nyata dengan split, lalu menghasilkan ratusan gambar sintetis berdasarkan itu.

Ketika model seperti YOLOv5 dilatih hanya dengan 10 gambar nyata, performa deteksi sangat terbatas. Namun, ketika ditambahkan 40 gambar sintetis, akurasi meningkat secara signifikan—baik dalam jumlah prediksi yang benar maupun tingkat kepercayaan deteksinya. Bahkan, kombinasi 40 gambar nyata dan 40 sintetis bisa menyamai performa model yang dilatih dengan 80 gambar nyata penuh, membuktikan efisiensi pendekatan ini.

 

Perbandingan dengan Model Generatif Lain

Peneliti juga menguji metode generatif lain seperti DFMGAN (berbasis GAN) dan model diffusion yang baru-baru ini populer. Sayangnya, kedua pendekatan ini tidak bisa menghasilkan keragaman dan ketajaman visual yang dibutuhkan, terutama pada permukaan reflektif. Selain itu, model ini tidak mendukung HDR imaging, yang sangat krusial dalam dunia manufaktur logam.

Pendekatan Singh unggul karena mampu mengontrol lokasi cacat, pencahayaan, ukuran, serta bentuk, menghasilkan data yang sangat sesuai dengan kondisi nyata di lini produksi.

 

Teknik Pendukung: Kunci Realisme dan Akurasi

Dua hal menarik yang meningkatkan kualitas sintesis gambar dalam studi ini adalah:

  1. Label Randomisation
    Karena batas split tidak selalu jelas, peneliti melakukan pelebaran label cacat secara acak berdasarkan distribusi nyata. Ini membantu model memahami variasi bentuk cacat yang tidak selalu terdefinisi secara tajam.
  2. Penambahan Impurities
    Gambar sintetis tidak hanya dibuat “bersih”, tetapi justru ditambahkan goresan, noda, atau tekstur acak. Ini penting karena model yang hanya dilatih dengan gambar ideal sering gagal saat dihadapkan pada citra nyata yang kompleks.

Hasilnya, model yang dilatih dengan gambar sintetis kaya detail menunjukkan peningkatan akurasi hingga hampir 30% dibanding model yang hanya menggunakan gambar nyata.

 

Nilai Praktis di Dunia Industri

Pendekatan ini sangat cocok untuk pabrik otomotif, aerospace, atau produsen alat berat di mana split defect berarti kehilangan komponen bernilai tinggi. Dibandingkan dengan biaya memproduksi 80 komponen cacat untuk data pelatihan, menciptakan 40 data sintetis dari hanya 10 komponen jauh lebih hemat dan efisien.

Selain itu, karena framework ini berbasis parameter yang umum digunakan dalam simulasi manufaktur, seperti FLC dan FEM, adaptasinya ke produk lain relatif mudah.

 

Kritik dan Arah Perbaikan

Meski hasilnya sangat menjanjikan, pendekatan ini masih fokus pada satu jenis cacat, yakni split. Untuk penerapan lebih luas, framework ini perlu diperluas ke jenis cacat lain seperti wrinkle (kerutan) atau dents (penyok). Selain itu, kerja sama dengan pabrik nyata akan membantu validasi performa dalam kondisi produksi yang sebenarnya.

 

Kesimpulan: Cerdas, Realistis, dan Siap Industri

Singh dan tim berhasil menjembatani kesenjangan antara teori dan praktik. Mereka bukan hanya membuktikan bahwa gambar sintetis bisa efektif, tetapi juga menunjukkan cara menghasilkan gambar yang secara statistik dan visual mewakili kondisi nyata. Hasilnya, sistem deteksi berbasis deep learning menjadi lebih tangguh, akurat, dan layak diterapkan di dunia industri yang menuntut efisiensi dan presisi tinggi.

 

Sumber:

Singh, A. R., Bashford-Rogers, T., Hazra, S., & Debattista, K. (2023). Generating Synthetic Training Images to Detect Split Defects in Stamped Components. IEEE Transactions on Industrial Informatics.