Solusi Efisien Menuju Pengelolaan Lingkungan Berkelanjutan

Dipublikasikan oleh Viskha Dwi Marcella Nanda

11 April 2025, 08.25

pexels.com

Pendahuluan: Mengapa Kualitas Air Penting?

Air mencakup 70% permukaan bumi, namun kualitasnya kian terancam akibat polusi industri dan urbanisasi pesat. Data dari WHO menunjukkan bahwa di negara berkembang, sekitar 80% penyakit disebabkan oleh kualitas air yang buruk, mengakibatkan 5 juta kematian dan 2,5 miliar kasus penyakit tiap tahunnya. Di Pakistan sendiri, kerugian ekonomi akibat penyakit bawaan air diperkirakan mencapai 0,6% hingga 1,44% GDP per tahun.

Secara tradisional, pengujian kualitas air dilakukan melalui analisis laboratorium yang mahal dan memakan waktu, menjadikannya kurang efektif untuk deteksi dini atau pemantauan secara real-time. Hal inilah yang menjadi dasar penelitian ini: menghadirkan pendekatan Machine Learning (ML) untuk prediksi kualitas air yang cepat, murah, dan akurat.

 

Tujuan Penelitian

Penelitian ini bertujuan untuk:

  1. Memprediksi Water Quality Index (WQI), indikator numerik utama kualitas air.
  2. Mengklasifikasikan Water Quality Class (WQC), kategori kualitas air berdasarkan WQI.

Dengan memanfaatkan algoritma supervised machine learning, studi ini ingin membuktikan bahwa sistem prediksi kualitas air dapat diimplementasikan secara real-time dengan biaya yang terjangkau.

 

Metodologi dan Dataset

Pengumpulan dan Pra-Pemrosesan Data

Data dikumpulkan dari Rawal Watershed, Pakistan, melalui Pakistan Council of Research in Water Resources (PCRWR), mencakup 663 sampel dari 13 lokasi antara 2009 hingga 2012. Parameter utama yang digunakan dalam prediksi meliputi:

  • pH
  • Turbidity (kekeruhan)
  • Temperature
  • Total Dissolved Solids (TDS)
  • Nitrites
  • Fecal Coliform

Setiap parameter dinormalisasi menggunakan Q-Value Normalization dan Z-Score Normalization, memastikan data berada dalam rentang standar yang memungkinkan pembelajaran mesin bekerja secara optimal.

Penanganan Outlier

Peneliti menggunakan Boxplot Analysis untuk mendeteksi dan mengeliminasi outlier, sebuah langkah penting agar model machine learning tidak bias akibat data ekstrem.

 

Algoritma Machine Learning yang Digunakan

Peneliti mengevaluasi berbagai model, baik regresi maupun klasifikasi, seperti:

  • Gradient Boosting
  • Polynomial Regression
  • Random Forest
  • Multi-layer Perceptron (MLP)
  • Support Vector Machine (SVM)
  • K-Nearest Neighbors (KNN)
  • Decision Tree
  • Logistic Regression

Penekanan utama penelitian ini adalah pada Gradient Boosting untuk prediksi WQI dan MLP untuk klasifikasi WQC, yang menunjukkan hasil paling akurat dibandingkan model lain.

 

Hasil dan Analisis

Prediksi Water Quality Index (WQI)

  • Gradient Boosting mencatat Mean Absolute Error (MAE) sebesar 1,9642, Mean Squared Error (MSE) 7,2011, dan R-squared 0,7485.
  • Polynomial Regression juga menunjukkan performa baik dengan MAE 2,0037.

Klasifikasi Water Quality Class (WQC)

  • MLP mencatat akurasi sebesar 85%, dengan precision 56,59% dan recall 56,40%.

Analisis Tambahan: Meskipun 85% akurasi terdengar memuaskan, dalam konteks sistem monitoring real-time berbasis IoT, ada kebutuhan untuk peningkatan presisi dan recall agar tindakan penanganan bisa lebih cepat dilakukan.

 

Kelebihan Penelitian

  1. Sederhana dan Efisien
    Menggunakan empat parameter utama (pH, Turbidity, Temperature, TDS) saja sudah cukup untuk menghasilkan prediksi akurat. Hal ini sangat mengurangi biaya sensor dalam implementasi IoT.
  2. Real-Time dan Biaya Rendah
    Dengan model yang efisien, penelitian ini membuka jalan bagi pengembangan sistem pemantauan kualitas air secara real-time tanpa perlu laboratorium mahal.
  3. Kontribusi pada Smart City
    Penelitian ini menjadi langkah awal untuk mendukung konsep Smart Water Management System di kota-kota yang sedang berkembang.

 

Kritik dan Keterbatasan

  1. Ukuran Dataset Terbatas
    Dataset hanya mencakup 663 sampel dari satu lokasi geografis, membuat generalisasi global masih terbatas.
  2. Parameter yang Digunakan Masih Terbatas
    Penelitian ini hanya mengandalkan enam parameter, sementara kualitas air di dunia nyata bisa dipengaruhi oleh banyak faktor lain, seperti logam berat atau senyawa organik berbahaya.
  3. Kurangnya Penjelasan Interpretabilitas Model
    Model seperti Gradient Boosting cenderung bersifat "black box", yang menyulitkan dalam penjelasan kepada pemangku kebijakan atau masyarakat umum.

Studi Kasus Relevan dan Penerapan Nyata

India: Pemantauan Sungai Gangga

Teknologi ML serupa telah digunakan di India, di mana sistem prediksi berbasis Random Forest membantu deteksi dini polusi di sungai Gangga. Hasilnya, tingkat BOD dapat dipantau secara dinamis, mencegah pencemaran lebih lanjut.

Eropa: Sistem IoT Water Monitoring

Beberapa negara di Eropa menggunakan IoT + ML untuk mendeteksi pencemaran logam berat di air minum, dengan akurasi mencapai 90%.

Rekomendasi untuk Penelitian Lanjutan

  1. Perluasan Dataset Global
    Mengintegrasikan data dari berbagai negara akan memperkuat kemampuan generalisasi model.
  2. Eksplorasi Deep Learning
    Penggunaan model Convolutional Neural Network (CNN) atau Recurrent Neural Network (RNN) bisa membuka peluang prediksi spasial-temporal yang lebih akurat.
  3. Integrasi IoT dan Cloud Computing
    Kombinasi antara sensor IoT, pengolahan data di edge computing, dan analisis di cloud dapat menciptakan sistem pemantauan kualitas air yang otomatis, scalable, dan efisien secara biaya.

 

Implikasi Praktis bagi Indonesia

Indonesia menghadapi tantangan besar dalam pengelolaan kualitas air, terutama di Sungai Citarum, yang dikenal sebagai salah satu sungai paling tercemar di dunia. Penerapan teknologi machine learning seperti yang dipaparkan dalam paper ini dapat:

  • Mengurangi beban kerja laboratorium lingkungan.
  • Mendeteksi pencemaran lebih cepat dan murah.
  • Memberikan data real-time kepada pengambil kebijakan.

Potensi Implementasi:

  • Sistem Early Warning di Danau Toba berbasis sensor pH dan TDS.
  • Pemantauan Kualitas Air Laut di Batam untuk industri perikanan.

Kesimpulan: Masa Depan Pengelolaan Air Ada di Machine Learning

Penelitian ini membuktikan bahwa machine learning, khususnya Gradient Boosting dan Multi-layer Perceptron, mampu menjadi solusi masa depan untuk sistem prediksi kualitas air yang efisien, murah, dan siap diterapkan secara luas. Dengan mengandalkan sedikit parameter, sistem ini tetap mampu memberikan hasil yang akurat, menjadi langkah besar menuju manajemen kualitas air berkelanjutan.

 

Sumber Paper:

Ahmed, U., Mumtaz, R., Anwar, H., Shah, A. A., Irfan, R., & García-Nieto, J. (2019). Efficient water quality prediction using supervised machine learning. Water, 11(11), 2210.