Revolusi Deteksi Cacat Kain:Analisis Metode Modified Local Binary Patterns (LBP)

Dipublikasikan oleh Viskha Dwi Marcella Nanda

15 April 2025, 10.56

pixabay.com

Pendahuluan

Di era industri tekstil modern, kualitas kain menjadi penentu utama nilai jual. Bahkan, cacat kecil dapat menurunkan harga jual kain hingga 45–65%. Masalah semakin kompleks ketika kecepatan produksi meningkat, sementara kemampuan manusia untuk mendeteksi cacat tetap terbatas. Di sinilah teknologi Automated Visual Inspection (AVI) berbasis pengolahan citra menjadi solusi yang mendesak.

Penelitian oleh Tajeripour et al. memperkenalkan metode deteksi cacat kain yang berbasis Modified Local Binary Patterns (LBP). Tujuannya adalah menyederhanakan proses deteksi cacat namun tetap efisien, akurat, dan mampu diimplementasikan secara online dalam proses produksi.

 

Apa itu Local Binary Patterns (LBP)?

LBP adalah metode pengolahan citra untuk analisis tekstur yang dikembangkan oleh Ojala et al. pada tahun 1990-an. Secara sederhana, LBP bekerja dengan membandingkan intensitas piksel pusat dengan piksel-piksel tetangganya dalam suatu jendela kecil, kemudian mengubah hasil perbandingan itu menjadi representasi biner.

Dalam konteks deteksi cacat kain, metode ini sangat cocok karena tekstur kain bersifat berulang dan memiliki pola periodik yang konsisten. Cacat adalah bentuk gangguan yang mengacaukan pola tersebut. LBP yang dimodifikasi dalam penelitian ini memungkinkan pendeteksian berbagai cacat, baik pada kain berpola sederhana maupun kompleks.

 

Permasalahan yang Dihadapi Industri Tekstil

Industri tekstil menghadapi tantangan besar dalam hal:

  • Kecepatan produksi tinggi, hingga 200 m/menit.
  • Ketergantungan pada operator manusia, yang hanya mampu mendeteksi 60% cacat jika kecepatan produksi melebihi 30 m/menit.
  • Variasi pola kain yang semakin rumit, seperti Jacquard dengan motif bunga atau desain kompleks lainnya.

Teknologi AVI harus mampu:

  • Menangani berbagai jenis kain, baik patterned maupun unpatterned.
  • Bekerja secara real-time dengan akurasi tinggi.

 

Kontribusi Utama Penelitian

1. Penggunaan Modified LBP untuk Deteksi Cacat

LBP klasik digunakan untuk klasifikasi tekstur, namun penelitian ini memodifikasi algoritma tersebut untuk fokus pada deteksi cacat:

  • Rotasi tidak relevan: Karena posisi gulungan kain tetap, rotasi diabaikan, sehingga digunakan jendela persegi bukan lingkaran.
  • Probabilitas kemunculan label LBP digunakan sebagai fitur utama dalam klasifikasi daerah cacat dan tidak cacat.
  • Pendekatan Multiresolusi: Menggunakan jendela dengan berbagai ukuran untuk menangkap cacat dari berbagai skala.

2. Deteksi pada Kain Berpola dan Tidak Berpola

  • Untuk kain tidak berpola, LBP diterapkan langsung pada jendela non-overlapping.
  • Pada kain berpola, digunakan jendela overlapping untuk mempertahankan konteks pola berulang.

 

Metodologi dan Implementasi

Dataset

  • Kain unpatterned seperti Twill dan Plain.
  • Kain patterned seperti Jacquard dengan pola titik, kotak, dan bintang.
  • Cacat yang diuji termasuk: double yarn, missing yarn, broken fabric, hole, oil stain, knot, netting multiple.

Langkah Kerja Algoritma

  1. Training Stage:
    • Mengambil gambar kain bebas cacat.
    • Membagi gambar menjadi jendela untuk menghitung reference feature vector.
    • Menentukan ambang batas (threshold) berdasarkan distribusi probabilitas label LBP.
  2. Testing Stage:
    • Menerapkan LBP pada jendela gambar kain yang diuji.
    • Menghitung log-likelihood ratio untuk membandingkan fitur jendela dengan reference feature vector.
    • Jika nilai lebih besar dari threshold, maka jendela dianggap cacat.

 

Hasil dan Diskusi

Akurasi Deteksi

  • Unpatterned Fabrics: Deteksi rata-rata 97% untuk cacat seperti missing yarn dan broken fabric.
  • Patterned Fabrics: Deteksi rata-rata 95% pada berbagai jenis cacat.
  • Kombinasi LBP8,3 + LBP16,5 mencapai deteksi >95% di berbagai jenis cacat.

Kecepatan dan Kompleksitas

  • Lebih cepat dibanding metode Gabor filter yang butuh banyak komputasi.
  • Implementasi online memungkinkan: Simpel, tanpa perlu transformasi kompleks seperti Fourier atau Wavelet.

 

Nilai Tambah & Opini

Kelebihan Metode

  • Efisien dan ringan secara komputasi, cocok untuk sistem online pada jalur produksi.
  • Multiresolusi meningkatkan akurasi dalam mendeteksi cacat kecil maupun besar.
  • Gray-scale invariant, tidak terpengaruh perubahan pencahayaan.

Kritik & Batasan

  • Keterbatasan pada pola non-periodik: Sistem sangat bergantung pada pola berulang.
  • Resolusi pola cacat rendah: Walaupun cacat terdeteksi, pola yang dihasilkan kurang detail dibanding metode seperti Gabor.

Perbandingan dengan Penelitian Lain

  • Ngan et al. (2005): Menggunakan Wavelet untuk kain berpola, namun lebih berat secara komputasi.
  • Kumar & Pang (2002): Gabor filters akurat, tetapi lambat.
  • Tajeripour et al. menghadirkan solusi di tengah—cukup akurat, lebih cepat, mudah diimplementasikan.

 

Implikasi Praktis di Industri

Manfaat Langsung

  • Hemat biaya: Tidak perlu tenaga kerja manusia dalam jumlah besar untuk inspeksi.
  • Meningkatkan kualitas produksi: Deteksi lebih akurat dan konsisten.
  • Fleksibel diterapkan di berbagai lini produksi tekstil.

Tren Industri

  • Integrasi dengan sistem IoT: Data dari deteksi cacat dapat langsung masuk ke sistem monitoring produksi.
  • Edge Computing: Algoritma ringan LBP cocok diimplementasikan pada perangkat edge, mengurangi kebutuhan pengolahan di server pusat.

 

Studi Kasus Industri Nyata

Di industri tekstil India dan China, penerapan inspeksi visual otomatis menjadi tren yang tak terhindarkan. Dengan ribuan meter kain diproduksi tiap jam, penerapan sistem berbasis Modified LBP seperti ini bisa menghemat jutaan rupiah setiap harinya karena mengurangi tingkat produk cacat yang lolos inspeksi.

 

Rekomendasi Penelitian Selanjutnya

  • Kombinasi dengan Deep Learning: Menggabungkan keunggulan LBP dalam ekstraksi fitur dengan klasifikasi CNN untuk meningkatkan akurasi.
  • Penerapan pada bahan non-tekstil: Kayu, plastik, bahkan kulit sintetis yang juga memiliki tekstur berulang.

 

Kesimpulan

Penelitian Tajeripour et al. berhasil menunjukkan bahwa Modified LBP adalah metode sederhana namun efektif untuk deteksi cacat kain secara otomatis. Pendekatan ini menawarkan solusi praktis dengan akurasi tinggi dan komputasi rendah, ideal untuk industri manufaktur tekstil modern yang membutuhkan sistem inspeksi real-time.

 

Sumber Artikel

Tajeripour, F., Kabir, E., & Soroushmehr, S. M. R. (2008). A novel method for fabric defect detection using modified local binary patterns. EURASIP Journal on Advances in Signal Processing, 2008(1), 783898.