Model dalam Riset Operasi: Representasi, Konstruksi, dan Solusi

Dipublikasikan oleh Syayyidatur Rosyida

08 Mei 2024, 10.44

sumber: pexels.com

Karakteristik penting

Tiga karakteristik penting riset operasi adalah orientasi sistem, penggunaan tim interdisipliner, dan penerapan metode ilmiah pada kondisi di mana penelitian dilakukan.

Orientasi sistem

Pendekatan sistematis terhadap masalah mengakui bahwa setiap bagian dari riset operasi sistem mempunyai pengaruh terhadap perilaku seluruh sistem. Meskipun setiap komponen berfungsi dengan baik, sistem secara keseluruhan mungkin tidak sebaik itu. Misalnya, merakit komponen mobil terbaik, apa pun mereknya, mungkin tidak akan menghasilkan mobil yang bagus atau bahkan berfungsi karena komponennya mungkin tidak kompatibel. Kinerja sistem ditentukan oleh interaksi antar bagian, bukan oleh tindakan masing-masing bagian.

Jadi, riset operasi mencoba mengevaluasi pengaruh perubahan di bagian mana pun dari sistem terhadap kinerja sistem keseluruhan dan menemukan alasan atas kemungkinan masalah yang muncul di satu bagian sistem di bagian lain atau dalam hubungan sistem. Dalam industri, masalah produksi dapat diselesaikan dengan mengubah kebijakan pemasaran. Misalnya, jika sebuah pabrik menghasilkan beberapa produk yang menguntungkan dalam jumlah besar dan produk yang kurang menguntungkan dalam jumlah kecil, produksi jangka panjang yang efisien dari produk-produk yang menguntungkan dalam jumlah besar mungkin terpaksa dihentikan karena volume rendah dalam jangka pendek. produksi - mengalahkan tujuan.

Seorang ilmuwan operasi dapat merekomendasikan pengurangan penjualan produk yang kurang menguntungkan dan meningkatkan penjualan produk yang menguntungkan dengan menetapkan sistem insentif bagi tenaga penjualan yang secara khusus memberikan kompensasi kepada mereka karena menjual produk tertentu.

Tim multidisiplin

Bidang sains dan teknologi telah berkembang pesat selama 100 tahun terakhir. Perkembangan ilmu pengetahuan akibat pesatnya pertumbuhan ilmu pengetahuan telah memberikan ilmu pengetahuan suatu sistem pengarsipan yang memungkinkan informasi dapat diklasifikasi secara sistematis. Sistem klasifikasi ini berguna untuk memecahkan banyak masalah dengan mengidentifikasi disiplin ilmu yang sesuai untuk solusinya. Namun, kesulitan muncul pada permasalahan yang lebih kompleks, terutama pada sistem yang terorganisir dan besar.

Oleh karena itu, penting untuk menemukan cara untuk menggabungkan perspektif disiplin ilmu yang berbeda. Penggunaan tim interdisipliner menjadi sangat penting dalam hal ini, karena metode yang digunakan bervariasi dari satu disiplin ke disiplin lain. Tim interdisipliner menyediakan lebih banyak metode dan alat penelitian daripada yang tersedia secara individual. Dengan demikian, riset operasional dicirikan oleh kombinasi departemen yang tidak biasa dalam kelompok penelitian dan penggunaan metode penelitian serbaguna.

Metodologi

Seiring perkembangan sains dan teknologi, metode riset telah berkembang pesat dalam kurun waktu seabad terakhir. Awalnya, eksperimen laboratorium menjadi metode utama dalam penelitian ilmiah. Namun, untuk sistem yang besar dan kompleks seperti yang terdapat dalam riset operasional, eksperimen laboratorium menjadi tidak memungkinkan. Bahkan jika memungkinkan, hasil dari eksperimen tersebut belum tentu dapat diterapkan secara langsung pada situasi nyata, seperti yang terjadi pada awal pengembangan radar. Oleh karena itu, perlu adanya metode alternatif yang dapat menggambarkan perilaku sistem secara akurat dalam konteks alaminya.

Pada saat ini, riset operasional telah menemukan solusi dengan menggunakan model sebagai representasi sistem yang akan diteliti. Dengan model yang baik, eksperimen, yang sering disebut sebagai simulasi, dapat dilakukan untuk menganalisis berbagai skenario dan memperoleh hasil yang berguna. Tahapan riset operasional dimulai dengan merumuskan masalah, yang melibatkan perancangan ukuran kinerja yang sesuai, identifikasi berbagai tindakan yang mungkin, dan penentuan variabel yang relevan. 

Tahapan riset operasi

Selanjutnya, konstruksi model menjadi tahap penting dalam proses ini. Model merupakan representasi sederhana dari dunia nyata yang mencakup variabel-variabel yang relevan dengan masalah yang dihadapi. Model dapat berupa fisik, grafis, atau simbolik, tergantung pada kompleksitas sistem yang dipelajari. Model simbolik sering digunakan dalam riset operasional karena fleksibilitasnya dalam mewakili sistem yang kompleks.

Formulasi masalah

Analisis riset operasional bertujuan untuk membentuk hubungan sebab-akibat antara variabel terkontrol dan tidak terkontrol serta kinerja sistem. Meskipun eksperimen dengan sistem sebenarnya sering kali berguna, terdapat pula metode analisis lainnya seperti inspeksi, penggunaan analogi, analisis operasional, dan eksperimen operasional. Pemilihan metode tergantung pada kompleksitas masalah yang dihadapi.

Konstruksi model

Model merupakan representasi sederhana dari dunia nyata yang hanya mencakup variabel-variabel yang relevan dengan permasalahan yang dihadapi. Model benda jatuh bebas, misalnya, tidak memperhitungkan warna, tekstur, atau bentuk benda. Beberapa model mungkin tidak mencakup semua variabel yang relevan karena hanya sebagian kecil variabel tersebut yang mampu menjelaskan fenomena yang ingin dijelaskan. Meskipun model menyederhanakan dunia nyata, kesalahan dalam prediksi seringkali bisa diabaikan karena manfaat besar dalam operasi yang diperoleh dari model tersebut.

Model riset operasi biasanya bersifat simbolik karena simbol mewakili properti sistem. Model fisik adalah representasi fisik dari sistem, seperti model kapal atau pesawat terbang, sementara model grafis lebih abstrak. Model simbolik lebih mudah dibangun dan dimanipulasi daripada model fisik.

Model simbolik sepenuhnya abstrak dan diberi makna ketika simbol-simbolnya didefinisikan. Struktur yang serupa dalam model simbolik dari sistem yang berbeda dapat mengungkapkan pola yang sama dalam perilaku sistem. Model analog adalah sistem yang memiliki struktur yang sama dengan sistem lainnya, meskipun isinya berbeda.

Meskipun model simbolik memiliki keuntungan, model fisik masih berguna dalam beberapa kasus, terutama untuk pengujian struktur dan mekanisme fisik. Model fisik dan grafis sering digunakan dalam tahap awal pembuatan model sistem simbolik.

Model riset operasi harus menjelaskan hubungan sebab akibat antara variabel terkontrol dan tidak terkontrol serta kinerja sistem. Ada empat pola konstruksi model, dua di antaranya melibatkan eksperimen: inspeksi, penggunaan analog, analisis operasional, dan eksperimen operasional.

Dalam beberapa kasus, model permasalahan mungkin terlalu rumit atau besar untuk dipecahkan. Namun, model dapat dibagi menjadi bagian-bagian yang dapat diselesaikan secara individual, dan solusi dari satu model dapat digunakan sebagai masukan bagi model lainnya.

Ada dua jenis prosedur untuk memperoleh solusi dari model: deduktif dan induktif. Dengan deduksi, seseorang langsung berpindah dari model ke solusi, sedangkan dengan induksi, seseorang mencoba dan membandingkan nilai-nilai yang berbeda dari variabel yang dikendalikan. Algoritma, heuristik, dan simulasi adalah beberapa prosedur yang digunakan untuk mencari solusi dari model riset operasi.

Mendapatkan solusi dari model

Prosedur untuk mencari solusi dari sebuah model dapat dilakukan secara deduktif atau induktif. Dalam pendekatan deduktif, seseorang langsung menggunakan model untuk mencari solusi, baik dalam bentuk simbolik maupun numerik. Matematika, seperti kalkulus, menyediakan prosedur analitis eksplisit untuk menemukan solusi yang disebut algoritma.

Meskipun tidak semua model dapat diselesaikan, dan beberapa terlalu kompleks untuk dipecahkan, model tersebut masih dapat digunakan untuk membandingkan solusi alternatif. Terkadang, dengan melakukan serangkaian perbandingan, setiap iterasi mungkin menghasilkan alternatif yang lebih baik dari sebelumnya. Proses pencarian solusi semacam ini disebut heuristik.

Pendekatan induktif melibatkan uji coba dan perbandingan nilai-nilai yang berbeda dari variabel yang dikontrol. Jika prosedur tersebut secara berulang terus menerus meningkatkan solusi hingga mencapai solusi optimal atau tidak dapat ditingkatkan lebih lanjut, itu disebut sebagai iteratif. Untuk menghentikan proses tersebut, diperlukan suatu aturan yang menentukan titik di mana perbaikan yang diharapkan lebih kecil dari biaya pengujian. Hal ini dikenal sebagai aturan penghentian.

Beberapa algoritma terkenal seperti pemrograman linier, nonlinier, dan dinamis adalah prosedur iteratif berdasarkan teori matematika. Di sisi lain, simulasi dan optimasi eksperimental adalah prosedur iteratif yang didasarkan pada statistik.

Menguji model dan solusinya

Suatu model bisa memiliki kelemahan karena beberapa alasan, seperti memuat variabel yang tidak relevan, mengecualikan variabel yang penting, atau bahkan menggambarkan variabel dengan tidak tepat. Untuk menguji kelemahan suatu model, kita menggunakan metode statistik yang membutuhkan pemahaman tentang teori pengambilan sampel dan estimasi, desain eksperimen, dan teori pengujian hipotesis.

Teori estimasi pengambilan sampel berkaitan dengan cara memilih sampel item dari kelompok besar dan menggunakan data yang diamati untuk menggambarkan keseluruhan kelompok. Untuk menghemat waktu dan biaya, sampel biasanya dibuat sekecil mungkin. Ada berbagai teori desain pengambilan sampel dan estimasi, masing-masing menghasilkan estimasi dengan karakteristik yang berbeda.

Struktur model melibatkan fungsi-fungsi yang menghubungkan ukuran kinerja dengan variabel yang dikendalikan dan tidak dikendalikan. Misalnya, suatu bisnis mungkin ingin menunjukkan hubungan fungsional antara tingkat keuntungan (ukuran kinerja) dan variabel yang mereka kendalikan (seperti harga dan biaya iklan) dan variabel yang tidak mereka kendalikan (seperti kondisi ekonomi dan persaingan). Untuk menguji model, kita membandingkan nilai ukuran kinerja yang dihasilkan dari model dengan nilai sebenarnya dalam berbagai kondisi. Jika ada perbedaan yang signifikan, atau jika perbedaan tersebut bervariasi, maka model tersebut memerlukan penyesuaian.

Solusi yang dihasilkan dari suatu model diuji untuk melihat apakah menghasilkan kinerja yang lebih baik daripada beberapa alternatif. Pengujian ini dapat bersifat prospektif, memprediksi kinerja di masa depan, atau retrospektif, membandingkan solusi yang diusulkan dengan apa yang terjadi di masa lalu. Jika pengujian prospektif dan retrospektif tidak memungkinkan, solusi dapat dievaluasi dengan melakukan analisis sensitivitas, yaitu mengukur seberapa jauh perkiraan dalam solusi dapat salah sebelum solusi tersebut menjadi kurang baik dari prosedur pengambilan keputusan alternatif.

Perhitungan biaya dari penerapan suatu solusi harus dikurangkan dari keuntungan yang diharapkan dari solusi tersebut, sehingga dapat memperkirakan keuntungan bersih. Kesalahan atau inefisiensi dalam menerapkan solusi juga harus diperhitungkan dalam memperkirakan keuntungan bersih.

Menerapkan dan mengendalikan solusi

Terkadang, sebuah model bisa memiliki kelemahan karena beberapa alasan, seperti memasukkan variabel yang tidak relevan, mengabaikan variabel yang penting, atau bahkan menggambarkan variabel dengan tidak tepat. Untuk menguji kelemahan suatu model, kita menggunakan metode statistik yang memerlukan pemahaman tentang teori pengambilan sampel dan estimasi, desain eksperimen, serta teori pengujian hipotesis.

Teori pengambilan sampel berkaitan dengan cara memilih sampel item dari kelompok besar dan menggunakan data yang diamati untuk menggambarkan keseluruhan kelompok. Untuk menghemat waktu dan biaya, sampel biasanya dibuat sekecil mungkin. Ada berbagai teori tentang desain pengambilan sampel dan estimasi, masing-masing menghasilkan estimasi dengan karakteristik yang berbeda.

Struktur model melibatkan fungsi-fungsi yang menghubungkan kinerja dengan variabel yang dikontrol dan tidak dikontrol. Misalnya, sebuah perusahaan mungkin ingin menunjukkan hubungan antara tingkat keuntungan dengan variabel yang mereka kendalikan (seperti harga dan biaya iklan) dan variabel yang tidak mereka kendalikan (seperti kondisi ekonomi dan persaingan). Untuk menguji model, kita membandingkan nilai kinerja yang dihasilkan dari model dengan nilai-nilai yang sebenarnya dalam berbagai kondisi. Jika ada perbedaan yang signifikan, maka model tersebut memerlukan penyesuaian.

Solusi yang dihasilkan dari suatu model diuji untuk melihat apakah menghasilkan kinerja yang lebih baik daripada beberapa alternatif yang ada. Pengujian ini dapat bersifat prospektif, memprediksi kinerja di masa depan, atau retrospektif, membandingkan solusi yang diusulkan dengan apa yang terjadi di masa lalu. Jika pengujian prospektif dan retrospektif tidak mungkin, solusi dapat dievaluasi dengan melakukan analisis sensitivitas, yaitu mengukur seberapa jauh perkiraan dalam solusi dapat salah sebelum solusi tersebut menjadi kurang baik dari prosedur pengambilan keputusan alternatif.

Perhitungan biaya dari penerapan suatu solusi harus dikurangi dari keuntungan yang diharapkan dari solusi tersebut, sehingga dapat memperkirakan keuntungan bersih. Kesalahan atau inefisiensi dalam menerapkan solusi juga harus diperhitungkan dalam memperkirakan keuntungan bersih.

Komputer dan riset operasi

Simulasi

Simulasi merupakan sebuah metode untuk menghitung kinerja suatu sistem dengan mengevaluasi modelnya terhadap nilai-nilai variabel yang dipilih secara acak. Biasanya, simulasi dalam riset operasi melibatkan variabel "stokastik", yang berubah secara acak dalam distribusi probabilitas tertentu sepanjang waktu. Simulasi memerlukan penggunaan angka-angka acak dan prosedur untuk menghasilkannya, serta cara untuk mengubah angka-angka tersebut menjadi distribusi variabel yang relevan, mengambil sampel nilai-nilai tersebut, dan mengevaluasi kinerja yang dihasilkan.

Ada juga jenis simulasi yang melibatkan pengambilan keputusan oleh satu atau lebih pengambil keputusan nyata, yang disebut "permainan operasional". Permainan semacam ini biasanya digunakan dalam studi interaksi pengambil keputusan, terutama dalam situasi kompetitif. Namun, menarik kesimpulan dari permainan operasional ke dunia nyata masih merupakan tantangan.

Optimasi eksperimental adalah cara untuk melakukan eksperimen pada suatu sistem untuk menemukan solusi terbaik terhadap masalah yang ada di dalamnya. Eksperimen semacam itu dapat dilakukan secara bersamaan atau berurutan, dengan berbagai desain yang mungkin, tergantung pada situasi.

Analisis dan dukungan keputusan telah menjadi integral dalam organisasi bisnis dan pemerintahan sejak 1950-an. Pada awalnya, komputer digunakan untuk tugas-tugas seperti pencatatan, pembukuan, dan pemrosesan transaksi, yang sering disebut sebagai pemrosesan data. Meskipun penting, sebagian besar pekerjaan yang terlibat dalam pembangunan sistem tersebut tidak memerlukan metode riset operasi.

Analisis dan dukungan keputusan

Sejak diperkenalkan secara luas dalam organisasi bisnis dan pemerintahan pada tahun 1950an, aplikasi utama komputer adalah bidang pencatatan, pembukuan, dan pemrosesan transaksi. Aplikasi ini, biasa disebut pemrosesan data , mengotomatiskan aliran dokumen, memperhitungkan transaksi bisnis (seperti pemrosesan pesanan dan aktivitas inventaris dan pengiriman), dan memelihara catatan yang teratur dan akurat. Meskipun pemrosesan data sangat penting bagi sebagian besar organisasi, sebagian besar pekerjaan yang terlibat dalam perancangan sistem tersebut tidak memerlukan metode riset operasi.

Pada tahun 1960an, ketika komputer diterapkan pada masalah pengambilan keputusan rutin para manajer,sistem informasi manajemen (MIS) muncul. Sistem ini menggunakan data mentah (biasanya historis) dari sistem pemrosesan data untuk menyiapkan ringkasan manajemen, memetakan informasi tentang tren dan siklus, dan memantau kinerja aktual dibandingkan dengan rencana atau anggaran.

Baru-baru ini,sistem pendukung keputusan (DSS ) telah dikembangkan untuk memproyeksikan dan memprediksi hasil keputusan sebelum keputusan tersebut dibuat. Proyeksi ini memungkinkan para manajer dan analis untuk mengevaluasi kemungkinan konsekuensi dari keputusan dan mencoba beberapa alternatif di atas kertas sebelum menggunakan sumber daya yang berharga untuk program yang sebenarnya.

Perkembangan sistem informasi manajemen dan sistem pendukung keputusan membawa peneliti operasi dan insinyur industri ke garis depan dalam perencanaan bisnis. Sistem berbasis komputer ini memerlukan pengetahuan tentang suatu organisasi dan aktivitasnya selain keterampilan teknis dalam pemrograman komputer dan penanganan data. Permasalahan utama dalam MIS atau DSS mencakup bagaimana suatu sistem akan dimodelkan, bagaimana model sistem tersebut akan ditangani oleh komputer, data apa yang akan digunakan, seberapa jauh tren masa depan akan diekstrapolasi , dan seterusnya. Dalam sebagian besar pekerjaan ini, serta dalam pemodelan riset operasi yang lebih tradisional, teknik simulasi telah terbukti sangat berharga.

Alat perangkat lunak baru untuk pengambilan keputusan

Pertumbuhan pribadi yang eksplosif komputer dalam organisasi bisnis pada awal tahun 1980an melahirkan pertumbuhan paralel dalam perangkat lunak untuk membantu pengambilan keputusan. Alat-alat ini mencakup program spreadsheet untuk menganalisis masalah kompleks dengan jejak yang memiliki kumpulan data berbeda, program manajemen basis data yang memungkinkan pemeliharaan dan manipulasi informasi dalam jumlah besar secara teratur, dan program grafik yang dengan cepat dan mudah menyiapkan tampilan data yang terlihat profesional . Program bisnis (perangkat lunak) seperti ini dulunya berharga puluhan ribu dolar; sekarang mereka tersedia secara luas, dapat digunakan pada perangkat keras yang relatif murah, mudah digunakan tanpa mempelajari bahasa pemrograman, dan cukup kuat untuk menangani masalah bisnis yang rumit dan praktis.

Ketersediaan spreadsheet, basis data, dan program grafik pada komputer pribadi juga sangat membantu insinyur industri dan peneliti operasi yang pekerjaannya melibatkan konstruksi, solusi, dan pengujian model. Perangkat lunak yang mudah digunakan dan tidak memerlukan pengetahuan pemrograman yang luas memungkinkan pembuatan model yang lebih cepat dan hemat biaya dan juga membantu dalam mengkomunikasikan hasil analisis kepada manajemen. Memang benar, banyak manajer sekarang memiliki komputer di meja mereka dan bekerja dengan spreadsheet dan program lain sebagai bagian rutin dari tugas manajerial mereka.

Contoh model riset operasi dan aplikasinya

Seperti disebutkan sebelumnya, banyak masalah operasional sistem terorganisir memiliki struktur yang sama. Jenis struktur yang paling umum telah diidentifikasi sebagai masalah prototipe , dan pekerjaan ekstensif telah dilakukan pada pemodelan dan penyelesaiannya.

Meskipun semua permasalahan dengan struktur serupa tidak mempunyai model yang sama, permasalahan yang diterapkan pada permasalahan tersebut mungkin mempunyai struktur matematis yang sama dan karenanya dapat diselesaikan dengan satu prosedur. Beberapa permasalahan nyata terdiri dari kombinasi permasalahan-permasalahan yang lebih kecil, beberapa atau seluruh permasalahan tersebut termasuk dalam prototipe yang berbeda . Secara umum, model prototipe adalah yang terbesar yang dapat diselesaikan dalam satu langkah. Oleh karena itu, permasalahan besar yang terdiri dari kombinasi permasalahan prototipe biasanya harus dipecah menjadi unit-unit yang dapat dipecahkan; model keseluruhan yang digunakan adalah agregasi dari prototipe dan mungkin model lainnya.

Alokasi sumber daya

Masalah alokasi melibatkan distribusisumber daya di antara alternatif-alternatif yang bersaing untuk meminimalkan total biaya atau memaksimalkan keuntungan total. Masalah-masalah tersebut mempunyai komponen-komponen berikut: sekumpulan sumber daya yang tersedia dalam jumlah tertentu; serangkaian pekerjaan yang harus diselesaikan, masing-masing memerlukan sejumlah sumber daya tertentu; dan serangkaian biaya atau pengembalian untuk setiap pekerjaan dan sumber daya. Masalahnya adalah menentukan berapa banyak sumber daya yang dialokasikan untuk setiap pekerjaan.

Jika lebih banyak sumber daya yang tersedia daripada yang dibutuhkan, solusinya harus menunjukkan sumber daya mana yang tidak boleh digunakan, dengan mempertimbangkan biaya terkait. Demikian pula, jika terdapat lebih banyak pekerjaan daripada yang dapat dilakukan dengan sumber daya yang tersedia, solusinya harus menunjukkan pekerjaan mana yang tidak boleh dilakukan, sekali lagi dengan mempertimbangkan biaya terkait.

Jika setiap pekerjaan memerlukan tepat satu sumber daya ( misalnya, satu orang) dan setiap sumber daya hanya dapat digunakan pada satu pekerjaan, maka permasalahan yang dihasilkan adalah salah satu dari pekerjaan tersebut.penugasan. Jika sumber daya dapat dibagi, dan jika pekerjaan dan sumber daya dinyatakan dalam satuan pada skala yang sama, hal ini disebut transportasi atau masalah distribusi . Jika pekerjaan dan sumber daya tidak dinyatakan dalam satuan yang sama, maka hal ini merupakan masalah alokasi umum.

Masalah penugasan dapat berupa menugaskan pekerja ke kantor atau tempat kerja, truk ke jalur pengiriman, pengemudi ke truk, atau kelas ke ruangan. Masalah transportasi yang umum terjadi adalah pendistribusian gerbong barang kosong jika diperlukan atau penugasan pesanan ke pabrik untuk produksi. Masalah alokasi umum dapat terdiri dari penentuan mesin mana yang harus digunakan untuk membuat suatu produk tertentu atau rangkaian produk apa yang harus diproduksi di suatu pabrik selama periode tertentu.

Dalam masalah alokasi, biaya atau keuntungan per unit dapat bersifat independen atau saling bergantung; misalnya, keuntungan dari menginvestasikan satu dolar dalam upaya penjualan mungkin bergantung pada jumlah yang dibelanjakan untuk iklan. Jika alokasi yang dilakukan pada suatu periode mempengaruhi alokasi pada periode berikutnya, maka permasalahan tersebut dikatakan dinamis , dan waktu harus dipertimbangkan dalam penyelesaiannya.

Pemrograman linier

Pemrograman linier (LP) mengacu pada serangkaian teknik optimasi matematis yang telah terbukti efektif dalam memecahkan masalah alokasi sumber daya, khususnya yang ditemukan dalam sistem produksi industri. Metode pemrograman linier adalah teknik aljabar yang didasarkan pada serangkaian persamaan atau pertidaksamaan yang membatasi suatu masalah dan digunakan untuk mengoptimalkan ekspresi matematika yang disebut metode pemrograman linier.fungsi objektif . Fungsi tujuan dan batasan yang diberikan pada permasalahan harus bersifat deterministik dan dapat dinyatakan dalam bentuk linier. Pembatasan ini membatasi jumlah permasalahan yang dapat ditangani secara langsung, namun sejak diperkenalkannya program linier pada akhir tahun 1940an, banyak kemajuan telah dicapai untuk mengadaptasi metode ini pada permasalahan yang lebih kompleks.

Karena pemrograman linier mungkin merupakan matematika yang paling banyak digunakan teknik optimasi , banyak program komputer tersedia untuk memecahkan masalah LP. Misalnya saja, teknik LP kini digunakan secara rutin untuk permasalahan seperti pencampuran kilang minyak dan bahan kimia, pemilihan vendor atau pemasok untuk perusahaan manufaktur multi-pabrik besar , penentuan rute dan jadwal pengiriman, serta pengelolaan dan pemeliharaan armada truk.

Kontrol inventaris

Persediaan meliputi bahan mentah, bagian komponen, barang dalam proses, barang jadi, bahan pengemas dan pengemas, serta persediaan umum. Pengendalian persediaan, yang penting bagi kekuatan finansial suatu perusahaan, secara umum melibatkan penentuan pada titik mana dalam sistem produksi persediaan harus disimpan dan bagaimana bentuk serta ukurannya. Karena beberapa biaya unit meningkat seiring dengan ukuran inventaris—termasuk penyimpanan, keusangan , kerusakan, asuransi, investasi—dan biaya unit lainnya menurun seiring dengan ukuran inventaris—termasuk biaya penyiapan atau persiapan, penundaan karena kekurangan, dan sebagainya—hal ini merupakan bagian yang baik dari manajemen inventaris terdiri dari penentuan ukuran lot pembelian atau produksi yang optimal dan tingkat stok dasar yang akan menyeimbangkan pengaruh biaya yang berlawanan. Bagian lain dari masalah persediaan umum adalah menentukan tingkat (titik pemesanan ulang) dimana pesanan untuk pengisian kembali persediaan harus dimulai.

Pengendalian persediaan berkaitan dengan dua pertanyaan: kapan harus mengisi kembali persediaan dan berapa banyak. Ada dua sistem kontrol utama. Itusistem dua nampan (terkadang disebut sistem min-max) melibatkan penggunaan dua nampan, baik secara fisik atau di atas kertas. Wadah pertama ditujukan untuk memenuhi permintaan saat ini dan wadah kedua untuk memenuhi permintaan selama periode pengisian ulang. Ketika stok di nampan pertama habis , pesanan untuk jumlah tertentu dibuat. Itusistem siklus pemesanan ulang, atau sistem peninjauan siklus, terdiri dari pemesanan pada interval reguler yang tetap. Berbagai kombinasi sistem ini dapat digunakan dalam pembangunan prosedur pengendalian persediaan. Sistem dua tempat yang murni, misalnya, dapat dimodifikasi untuk memerlukan peninjauan stok secara siklis, bukan terus-menerus, dengan pesanan hanya dihasilkan ketika stok berada di bawah tingkat tertentu. Demikian pula, sistem siklus pemesanan ulang murni dapat dimodifikasi untuk memungkinkan pesanan dihasilkan jika stok berada di bawah tingkat pemesanan ulang di antara peninjauan siklus. Dalam variasi lainnya, jumlah pemesanan ulang dalam sistem siklus pemesanan ulang dibuat bergantung pada tingkat stok pada periode peninjauan atau kebutuhan untuk memesan produk atau bahan lain pada waktu yang sama atau keduanya.

Masalah persediaan klasik melibatkan penentuan berapa banyak sumber daya yang akan diperoleh , baik dengan membeli atau memproduksinya, dan apakah atau kapan memperolehnya untuk meminimalkan jumlah biaya yang meningkat seiring dengan besarnya persediaan dan biaya yang menurun seiring dengan peningkatan persediaan. . Biaya jenis pertama mencakup biaya modal yang diinvestasikan dalam persediaan, penanganan, penyimpanan, asuransi, pajak, penyusutan, kerusakan, dan keusangan. Biaya yang menurun seiring bertambahnya persediaan termasuk biaya kekurangan (yang timbul dari hilangnya penjualan), biaya pengaturan produksi, dan harga pembelian atau biaya produksi langsung. Biaya pengaturan mencakup biaya penempatan pesanan pembelian atau memulai proses produksi. Jika dipesan dalam jumlah besar, persediaan meningkat tetapi frekuensi pemesanan menurun, sehingga biaya setup menurun. Secara umum, semakin besar jumlah yang dipesan maka semakin rendah harga pembelian satuan karena adanya diskon kuantitas dan semakin rendah biaya produksi per unit akibat semakin besarnya efisiensi jangka panjang produksi. Variabel relevan lainnya mencakup permintaan sumber daya dan waktu antara penempatan dan pemenuhan pesanan.

Masalah inventaris muncul dalam berbagai konteks; misalnya, menentukan jumlah barang yang akan dibeli atau diproduksi, berapa banyak orang yang harus dipekerjakan atau dilatih, seberapa besar fasilitas produksi atau ritel baru yang harus dibangun atau berapa banyak yang harus disediakan, dan berapa banyak modal cair (operasional) yang harus tetap tersedia. Model inventaris untuk item tunggal telah dikembangkan dengan baik dan biasanya diselesaikan dengan kalkulus. Ketika jumlah pesanan untuk banyak item saling bergantung (seperti, misalnya, ketika ruang penyimpanan atau waktu produksi terbatas), masalahnya menjadi lebih sulit. Beberapa masalah yang lebih besar dapat diselesaikan dengan memecahnya menjadi masalah inventaris dan alokasi yang saling berinteraksi. Dalam permasalahan yang sangat besar, simulasi dapat digunakan untuk menguji berbagai aturan keputusan yang relevan.

Pendekatan Jepang

Pada tahun 1970-an beberapa perusahaan Jepang yang dipimpin olehToyota Motor Corporation , mengembangkan pendekatan yang sangat berbeda terhadap pengelolaan persediaan. MenciptakanDengan pendekatan “just-in-time” , elemen dasar dari sistem baru ini adalah pengurangan persediaan secara dramatis di seluruh sistem produksi total. Dengan mengandalkan penjadwalan yang cermat dan koordinasi pasokan, pihak Jepang memastikan bahwa suku cadang dan pasokan tersedia dalam jumlah yang tepat, dengan kualitas yang tepat, pada waktu yang tepat ketika dibutuhkan dalam proses produksi atau perakitan.

Ada dua hal yang membuat just-in-time berhasil—perhatian yang kuat terhadap kualitas di semua tingkat sistem secara keseluruhan meniadakan kebutuhan akan inventaris suku cadang untuk menutupi cacat yang ditemukan dalam proses manufaktur, dan koordinasi yang erat antara informasi dan rencana dengan pemasok dan vendor diperbolehkan. mereka untuk menyelaraskan jadwal dan pengiriman mereka dengan kebutuhan menit-menit terakhir dari produsen. Elemen pendekatan just-in-time kini telah diadopsi oleh banyak perusahaan di Amerika Serikat dan Eropa, meskipun banyak perusahaan yang tidak dapat menggunakan sistem ini secara maksimal karena jaringan pemasok mereka lebih besar dan tersebar lebih luas dibandingkan di Jepang.

Teknik Jepang kedua, disebutkanban (“kartu”), juga memungkinkan perusahaan Jepang menjadwalkan produksi dan mengelola inventaris dengan lebih efektif. Dalam sistem kanban , kartu atau tiket ditempelkan pada kumpulan komponen, rak, atau palet dalam proses pembuatan. Ketika suatu batch habis dalam proses perakitan, kanbannya dikembalikan ke departemen manufaktur dan batch lainnya segera dikirimkan. Karena jumlah total suku cadang atau batch dalam sistem dijaga konstan, koordinasi, penjadwalan, dan pengendalian inventaris menjadi sangat disederhanakan.

Disadur dari: www.britannica.com