Merevolusi Infrastruktur Air Perkotaan di Era Perubahan Iklim: Tantangan, Studi Kasus, dan Strategi Adaptasi

Dipublikasikan oleh Izura Ramadhani Fauziyah

01 Juli 2025, 11.34

pixabay.com

Infrastruktur air perkotaan (Urban Water Infrastructure/UWI) kini menjadi pusat perhatian dalam diskusi keberlanjutan kota dan pencapaian Sustainable Development Goals (SDGs). UWI meliputi jaringan pasokan air, pengolahan limbah, sistem drainase, bendungan, dan infrastruktur pendukung lainnya yang menopang kehidupan jutaan penduduk kota. Namun, perubahan iklim global telah menguji ketahanan sistem ini dengan menghadirkan tantangan baru: banjir ekstrem, kekeringan, kenaikan suhu, dan perubahan pola curah hujan. Paper Ahmad Ferdowsi dkk. (2024) memberikan tinjauan kritis terhadap dampak perubahan iklim pada UWI, menyoroti studi kasus, angka-angka penting, serta strategi adaptasi yang relevan untuk masa depan kota berkelanjutan.

Infrastruktur Air Perkotaan: Fondasi SDGs dan Kehidupan Kota

UWI berperan vital dalam mewujudkan SDGs, khususnya SDG 6 (air bersih dan sanitasi), SDG 11 (kota dan permukiman berkelanjutan), dan SDG 13 (aksi iklim). Selain itu, UWI juga terkait erat dengan SDG 1 (pengentasan kemiskinan), SDG 2 (ketahanan pangan), SDG 3 (kesehatan), SDG 7 (energi bersih), hingga SDG 9 (infrastruktur industri). Infrastruktur ini tidak hanya menyediakan air minum dan sanitasi, tetapi juga mendukung pertanian urban, energi (hidroelektrik), dan pengelolaan limbah yang ramah lingkungan1.

Namun, banyak infrastruktur air dibangun puluhan tahun lalu tanpa mempertimbangkan variabilitas iklim masa depan. Akibatnya, sistem ini kini menghadapi risiko kegagalan yang tinggi, dengan biaya sosial dan ekonomi yang sangat besar jika terjadi bencana.

Dampak Perubahan Iklim pada Infrastruktur Air Perkotaan

1. Banjir Ekstrem dan Kekeringan

  • Banjir besar dan kekeringan menjadi ancaman utama UWI. Perubahan pola curah hujan dan intensitas hujan ekstrem meningkatkan risiko banjir bandang, meluapnya drainase, serta kegagalan sistem pengendali banjir di kota-kota besar.
  • Studi menunjukkan, 0,5–1% kapasitas penyimpanan bendungan hilang setiap tahun akibat sedimentasi yang diperparah oleh banjir dan erosi tanah. Di Australia, hingga 40% air di waduk bisa hilang setiap tahun karena evaporasi yang meningkat akibat suhu tinggi1.

2. Kenaikan Suhu dan Dampaknya

  • Kenaikan suhu 1,8–3,7°C hingga akhir abad ini diprediksi meningkatkan frekuensi gelombang panas, mempercepat penguapan air, dan memperburuk kualitas air.
  • Evaporasi menyebabkan air menjadi lebih asin dan menurunkan ketersediaan air bersih. Di banyak negara, 25% air yang digunakan di sektor pertanian, industri, dan domestik menguap setiap tahun1.

3. Kualitas Air dan Kesehatan

  • Peningkatan suhu mempercepat degradasi biologis dan kimiawi air, mempercepat peluruhan klorin, dan meningkatkan risiko kontaminasi.
  • Banjir ekstrem dapat menyebabkan meluapnya limbah domestik dan industri ke sungai, mengancam kesehatan masyarakat dan ekosistem.

4. Kerusakan Infrastruktur

  • Jaringan pipa dan saluran bawah tanah rentan terhadap penurunan tanah akibat penurunan muka air tanah dan konsolidasi tanah. Kota-kota seperti Teheran dan Jakarta sudah menghadapi masalah ini, dengan risiko kerusakan jaringan pipa air bersih dan limbah1.
  • Jembatan dan bendungan yang dibangun sebelum era kesadaran perubahan iklim kini menghadapi risiko kegagalan akibat frekuensi banjir dan erosi yang meningkat. Di AS, 52% kegagalan jembatan disebabkan oleh kegagalan hidrolik (banjir dan scouring)1.

5. Studi Kasus: Sistem Drainase dan Pengelolaan Banjir

  • Studi di Fredrikstad, Norwegia, menunjukkan peningkatan jumlah node drainase yang tergenang akibat curah hujan ekstrem.
  • Di beberapa kota di Asia, sistem drainase lama gagal mengantisipasi banjir akibat perubahan pola hujan dan urbanisasi yang memperluas permukaan kedap air.
  • Kenaikan muka laut memperparah risiko banjir rob di kota-kota pesisir seperti Jakarta, Bangkok, dan Ho Chi Minh City.

Strategi Adaptasi: Dari Solusi Fisik hingga Pendekatan Berbasis Alam

1. Adaptasi pada Bendungan dan Waduk

  • Optimalisasi operasi waduk dengan model prediksi berbasis AI dan optimasi real-time untuk mengantisipasi banjir dan kekeringan.
  • Peningkatan kapasitas spillway, pembangunan check dam, dan penerapan sistem waduk berantai (cascade reservoirs) untuk mengurangi risiko banjir.
  • Pengendalian sedimentasi dengan vegetasi, check dam, dan flushing.
  • Evaporasi dapat ditekan hingga 95% dengan teknologi penutup permukaan (shade balls, solar PV cover), meski harus memperhatikan dampak lingkungan lanjutan.

2. Adaptasi pada Sistem Pengolahan Air dan Limbah

  • Peningkatan kapasitas dan fleksibilitas instalasi pengolahan air dan limbah untuk menghadapi fluktuasi debit akibat banjir dan kekeringan.
  • Penggunaan teknologi pengolahan canggih (misal, membran, advanced oxidation) untuk menjaga kualitas air di tengah perubahan suhu dan kontaminasi.
  • Integrasi pengelolaan energi-air: efisiensi energi di instalasi pengolahan air dan limbah menjadi krusial karena kebutuhan energi meningkat saat suhu naik.

3. Adaptasi pada Sistem Distribusi dan Drainase

  • Pengurangan kebocoran pipa dan sistem deteksi dini kerusakan jaringan.
  • Penggunaan material tahan korosi dan perubahan suhu pada pipa dan sambungan.
  • Penerapan sistem drainase berkelanjutan (Sustainable Urban Drainage System/SUDS), seperti permeable pavement, green roofs, dan bio-retention.
  • Pembangunan early warning system dan real-time flood forecasting dengan integrasi data cuaca, hidrologi, dan IoT.

4. Adaptasi pada Infrastruktur Pelindung (Levee, Jembatan, Culvert)

  • Rekayasa ulang desain jembatan, culvert, dan levee dengan mempertimbangkan proyeksi banjir masa depan, menggunakan material dan desain yang adaptif.
  • Penerapan vegetasi alami di tanggul dan tepi sungai untuk mengurangi erosi dan memperkuat struktur.
  • Peningkatan inspeksi dan pemeliharaan berkala, serta pembaruan standar desain sesuai proyeksi iklim terbaru.

5. Solusi Berbasis Alam dan Pendekatan Non-Struktural

  • Restorasi lahan basah, mangrove, dan riparian buffer untuk mengurangi banjir dan memperbaiki kualitas air.
  • Pengelolaan DAS terpadu dan reforestasi untuk mengurangi erosi dan sedimentasi waduk.
  • Edukasi publik, penguatan kapasitas kelembagaan, dan pembaruan regulasi menjadi fondasi adaptasi non-struktural.

Angka-Angka Kunci dan Studi Banding

  • Evaporasi waduk di Australia mencapai 40% per tahun; penurunan kapasitas bendungan global 0,5–1% per tahun akibat sedimentasi.
  • Biaya pemasangan teknologi penutup evaporasi bisa ditekan dengan penggunaan solar PV yang juga menghasilkan energi.
  • Studi di Beijing menunjukkan perangkat penghemat air rumah tangga mampu menurunkan konsumsi air hingga 15% di tengah krisis iklim.
  • Di beberapa kota Eropa, green infrastructure mampu menurunkan puncak debit banjir hingga 30% dan meningkatkan infiltrasi air tanah.

Keterkaitan dengan Tren Global dan Industri

  • Adaptasi UWI menjadi agenda utama kota-kota megapolitan di dunia, termasuk New York, London, Tokyo, dan Jakarta.
  • Integrasi nature-based solutions, digital twin, dan smart water management menjadi tren baru dalam perencanaan kota tahan iklim.
  • Kolaborasi lintas sektor (air, energi, perumahan, transportasi) dan lintas aktor (pemerintah, swasta, masyarakat) mutlak diperlukan.

Kritik, Opini, dan Rekomendasi

Kelebihan Paper Ferdowsi dkk.

  • Memberikan tinjauan komprehensif dan sistematis terhadap seluruh komponen UWI serta keterkaitannya dengan SDGs.
  • Menyajikan strategi adaptasi berbasis bukti, baik fisik, teknologi, maupun berbasis alam.
  • Mengintegrasikan pelajaran dari berbagai studi kasus global, sehingga relevan untuk berbagai konteks kota.

Tantangan dan Keterbatasan

  • Banyak rekomendasi masih bersifat umum; studi kasus spesifik di negara berkembang masih minim.
  • Belum membahas secara rinci aspek pembiayaan dan hambatan implementasi di kota dengan kapasitas fiskal terbatas.
  • Perlu pengembangan lebih lanjut pada integrasi data spasial, pemodelan prediktif, dan sistem monitoring berbasis IoT.

Rekomendasi Praktis

  • Kota-kota di Indonesia dan Asia Tenggara perlu segera mengaudit ketahanan UWI mereka terhadap proyeksi iklim 2050.
  • Pemerintah daerah harus memperbarui standar desain infrastruktur air dan drainase dengan memasukkan parameter perubahan iklim.
  • Investasi pada solusi berbasis alam dan digitalisasi sistem monitoring harus diprioritaskan.
  • Edukasi dan pelibatan masyarakat sangat penting untuk membangun budaya adaptasi dan kesiapsiagaan.

Penutup: Menuju Kota Tangguh Iklim dengan Infrastruktur Air Adaptif

Perubahan iklim menuntut transformasi mendasar pada infrastruktur air perkotaan. Kota-kota di seluruh dunia harus bergerak dari pendekatan reaktif ke proaktif—mengintegrasikan prediksi iklim, inovasi teknologi, solusi berbasis alam, dan tata kelola kolaboratif dalam perencanaan dan pengelolaan UWI. Paper Ferdowsi dkk. menegaskan bahwa masa depan kota berkelanjutan hanya bisa dicapai jika infrastruktur air mampu beradaptasi, tangguh, dan inklusif menghadapi tantangan iklim yang kian ekstrem.

Sumber asli:
Ahmad Ferdowsi, Farzad Piadeh, Kourosh Behzadian, Sayed-Farhad Mousavi, Mohammad Ehteram. (2024). Urban water infrastructure: A critical review on climate change impacts and adaptation strategies. Urban Climate, 58, 102132.