Algoritma Evolusioner dan Metaheuristik: Aplikasi dalam Desain dan Optimasi Rekayasa

Dipublikasikan oleh Syayyidatur Rosyida

10 Mei 2024, 08.51

sumber: pinterest.com

1. Pendahuluan

Algoritma evolusioner dan, secara umum, metaheuristik yang terinspirasi dari alam semakin populer sebagai metode kecerdasan komputasi, yang sangat berguna untuk masalah optimasi global. Keberhasilan kerangka kerja berbasis populasi ini terutama disebabkan oleh fleksibilitas dan kemudahan adaptasi terhadap masalah optimasi yang paling berbeda dan kompleks, tanpa memerlukan fitur atau kondisi khusus pada fungsi objektif dan kendala terkait, seperti kontinuitas, turunan, atau cembung. Masalah optimasi diskrit dan kombinatorial, serta masalah campuran, tidak menjadi batasan untuk kelas pengoptimal ini. Selain itu, persyaratan kuantifikasi ketidakpastian dalam proses pencarian, seperti dalam optimasi berbasis keandalan dan desain yang kuat, bukan merupakan batasan untuk pendekatan ini. Akhirnya, algoritma optimasi berbasis populasi dapat menangani masalah multiobjektif secara alami, dan hal ini telah membuat lompatan besar ke depan dalam kemampuan untuk menangani kelas masalah ini secara efektif. Keuntungan-keuntungan ini, bersama dengan peningkatan kinerja komputer yang stabil, mendorong peningkatan penggunaannya dalam penelitian dan industri di berbagai cabang teknik.

Metodologi ini memberdayakan peningkatan dalam desain teknik dan praktik optimasi di bidang-bidang di mana teknik optimasi klasik masih belum dapat efektif. Memang persyaratan dan batasan yang disebutkan di atas adalah hal yang biasa, seperti pemodelan yang tidak dapat dibedakan, dalam masalah rekayasa dunia nyata. Sebagai contoh, hal ini terjadi pada industri otomotif, industri penerbangan dan kedirgantaraan, serta teknik sipil, struktur, dan mesin, di mana perhitungan nilai fungsi objektif membutuhkan penyelesaian model numerik, menggunakan persamaan diferensial parsial (nonlinier), berdasarkan elemen hingga, elemen batas, volume hingga, dan sebagainya. Seperti yang dinyatakan dalam asal-usul Strategi Evolusi selama pertengahan tahun enam puluhan di Universitas Berlin (Jerman) dipicu oleh kebutuhan untuk menyelesaikan masalah “bentuk optimal benda dalam aliran” selama percobaan terowongan sayap di Institut Teknik Aliran, setelah upaya yang gagal dengan strategi koordinat dan gradien sederhana. Aplikasi awal algoritma evolusioner yang berhubungan dengan desain teknik dan optimasi dimulai pada akhir tahun delapan puluhan [3, 4] dan awal tahun sembilan puluhan seperti pada [5, 6]. Ada beberapa aplikasi yang dikompilasi dalam volume buku seperti di [7-10], dan bidang ini terus berkembang, seperti dalam kasus aplikasi multiobjektif evolusioner di mana tinjauan mutakhir dapat ditemukan di [11], atau [12, 13]. Volume terbaru dari kontribusi ilmiah di bidang ini dicakup oleh [14-16].

Kemajuan dalam penggunaan algoritma evolusioner dan metaheuristik yang terinspirasi oleh alam dalam aplikasi teknik membawa peluang dan juga tantangan bagi para peneliti untuk meningkatkan dan memajukan desain dan optimasi produk, sistem, dan layanan untuk kepentingan masyarakat. Tujuan dari edisi khusus ini adalah untuk mempublikasikan penelitian berkualitas tinggi atau artikel ulasan yang membahas perkembangan terbaru dari berbagai bidang teknik dalam kaitannya dengan penerapan algoritma evolusioner dan metaheuristik untuk desain dan optimasi, dan diharapkan dapat menstimulasi para peneliti lain untuk melanjutkan upaya untuk meningkatkan keadaan terkini dari bidang yang disebutkan di atas.

2. Kontribusi ilmiah dari edisi khusus

Dalam edisi khusus ini, proses penelaahan telah dilakukan di mana setidaknya dua penelaah per makalah telah ditugaskan, di mana tingkat penerimaan 15% telah diadakan.

Makalah yang diterima dapat diklasifikasikan menurut kategori teknik/aplikasi berikut: (a) teknik energi dan kelistrikan; (b) teknik struktur dan sipil; (c) penjadwalan transportasi dan optimasi kombinatorial; (d) kontrol; (e) aplikasi lain/militer.

Penjelasan singkat mengenai setiap kontribusi yang dipublikasikan dalam edisi khusus ini diberikan dalam paragraf-paragraf berikut ini sesuai dengan klasifikasi sebelumnya.

2.1. Teknik energi dan kelistrikan

Sebuah algoritma particle swarm optimization menggunakan strategi elang (ESPSO), sebuah metode kombinasi pencarian global dan pencarian lokal intensif, diperkenalkan untuk memecahkan masalah minimalisasi kerugian daya reaktif, oleh H. Yapıcı dan N. Cetinkaya. Eksperimen mencakup sistem daya IEEE 30-bus dan IEEE 118-bus dan subsistem distribusi daya nyata. Perbandingan dengan metaheuristik lain juga disediakan.

Rekonfigurasi smart grid dengan pembangkit terdistribusi dipelajari oleh C. Ma dkk., menggunakan optimasi particle swarm optimization hibrida ganda (algoritma optimasi particle swarm optimization biner yang lebih baik digunakan dalam pencarian grup cabang, dan algoritma pencarian optimasi particle swarm optimization biner grup yang diusulkan digunakan untuk pencarian di dalam grup). Dari simulasi pada sistem tenaga distribusi IEEE 33-bus, setelah konfigurasi ulang jaringan listrik terdistribusi, kehilangan jaringan distribusi berkurang, dan kualitas tegangan catu daya dan kualitas daya jaringan ditingkatkan.

M. Tan dkk. memperkenalkan model optimasi multiobjektif dari Masalah Penjadwalan Produksi Hot Rolling di bawah harga listrik Waktu Penggunaan, untuk meminimalkan biaya listrik secara simultan dalam produksi dan meminimalkan total penalti yang disebabkan oleh lompatan di antara lempengan yang berdekatan. Penjadwalan produksi berbasis algoritma genetika pengurutan tak berdominan (nondominated sorting genetic algorithm-II (NSGA-II)) dilakukan untuk mendapatkan solusi tak berdominan, dan metode pengambilan keputusan TOPSIS digunakan untuk pemilihan solusi akhir. Eksperimen mengkonfirmasi keberhasilan pendekatan tersebut.

2.2. teknik struktur dan sipil

J. I. Pelaez dkk. menyajikan algoritma memetika untuk desain Komposit dan Struktur Laminasi Simetris, dengan mempertimbangkan fungsi fitness kriteria ekonomi dan keamanan dalam desain dan mengimplementasikan satu set operator pencarian lokal. Algoritma ini dibandingkan dengan empat metaheuristik lainnya. Model ini telah diuji dengan desain pelat dengan pembebanan yang didistribusikan dan dibandingkan dengan dua model literatur, dan desain optimum yang divalidasi dengan paket perangkat lunak ANSYS.

F. Wu dan J. Xu menyajikan metode optimasi untuk mengevaluasi porositas reservoir yang rapat dengan menggunakan model multikomponen yang dimodifikasi menjadi model matriks campuran dan algoritma anil simulasi. Metode ini divalidasi dengan satu set data dari reservoir ketat.

Algoritma hybrid reliability-based design optimization (RBDO) diusulkan oleh H. M. Gomes dan L. L. Corso, yang menggabungkan karakteristik algoritma genetika dan particle swarm optimization dan sequential quadratic programming untuk pencarian lokal. Metode hibrida ini dianalisis berdasarkan tiga contoh benchmark RBDO rangka batang struktural untuk optimasi ukuran dengan batasan tegangan, perpindahan, dan frekuensi.

2.3. penjadwalan, transportasi, dan optimasi kombinatorial

Algoritma genetika (GA) berbasis dua fase optimasi diusulkan oleh D. Morillo dkk. untuk menyelesaikan perluasan berbasis energi dari Masalah Penjadwalan Proyek dengan Keterbatasan Sumber Daya Multimode, di mana pencarian difokuskan pada Daftar Moda dan bukan pada Daftar Aktivitas. Lima varian GA dibandingkan, di mana algoritma yang diusulkan mengungguli yang lain dalam kumpulan masalah dari pustaka masalah penjadwalan proyek PSP-LIB.

Masalah alokasi lokasi berkapasitas stokastik dua tahap dalam logistik darurat dipertimbangkan oleh Y. Deng dkk., di mana jumlah dan kapasitas pusat pasokan tidak pasti dan harus ditentukan. Untuk mengatasi masalah ini, sebuah model nilai ekspektasi dua tahap dan fungsi biaya yang digeneralisasi diusulkan. Sebuah particle swarm optimizer yang ditingkatkan dengan operator awan Gaussian, strategi restart, dan strategi parameter adaptif digunakan, serta menggunakan metode titik interior sebagai pengganti metode simpleks pada tahap kedua. Metode yang diusulkan meningkatkan presisi dan tingkat konvergensi jika dibandingkan dengan model nilai ekspektasi satu tahap klasik.

T. A. S. Masutti dan L. N. de Castro menyajikan tinjauan menyeluruh terhadap metode-metode yang terinspirasi oleh lebah yang dirancang untuk menyelesaikan masalah perutean kendaraan. Taksonomi metode dijelaskan secara rinci dan tinjauan tersebut diikuti dengan mempertimbangkan masalah yang diselesaikan dan modifikasi yang diperkenalkan dalam algoritme yang terinspirasi oleh lebah. Selain itu, algoritma TSPoptBees, modifikasi dari optBees asli yang sengaja difokuskan untuk memecahkan masalah salesman keliling (TSP), dibandingkan dengan metode optimasi lain yang terinspirasi oleh perilaku lebah untuk memecahkan satu set 28 contoh TSPLIB dengan hasil yang kompetitif.

Differential Evolution dibandingkan dengan algoritme genetika untuk menyelesaikan Electric Vehicle Routing Problem, oleh J. Barco dkk. Masalahnya didasarkan pada skema untuk mengoordinasikan penjadwalan rute dan pengisian ulang kendaraan listrik baterai (BEV), dengan mempertimbangkan biaya operasi dan degradasi baterai. Model ini didasarkan pada persamaan dinamika longitudinal gerak yang memperkirakan konsumsi energi setiap BEV, di mana studi kasus, skenario layanan antar-jemput bandara, diselesaikan.

Masalah pengemasan strip yang tidak beraturan, yang ada di banyak proses produksi di pabrik, dengan panggung persegi panjang, lebar tetap, dan panjang tidak terbatas, diselesaikan dalam penelitian yang diusulkan oleh B. A. Júnior dkk., yang menggabungkan prosedur penempatan wilayah bebas tabrakan dengan Algoritme Genetika Acak-Kunci Berfaktor Paralel dengan beberapa subpopulasi, di mana tujuannya adalah meminimalkan area yang diperlukan untuk mengalokasikan permintaan. Pendekatan ini diuji dalam satu set masalah EURO Special Interest Group on Cutting and Packing (ESICUP) dan dibandingkan dengan enam algoritma optimasi lainnya.

F. Alonso-Pecina dan D. Romero mengusulkan sebuah metode dua langkah untuk menyelesaikan Masalah Optimasi Desain Kereta Api, di mana langkah pertama bertujuan untuk menghasilkan solusi awal yang layak dan langkah kedua menggunakan simulated annealing untuk meningkatkan solusi awal, diikuti dengan prosedur yang mencoba untuk mengurangi jumlah kereta api yang dibutuhkan tanpa meningkatkan biaya keseluruhan. Eksperimen-eksperimen yang dilakukan meliputi contoh-contoh yang telah dikenal untuk memperbaiki metode-metode optimasi lainnya.

I. Stojanović dkk. menyelesaikan masalah Weber optimasi nonkonveks terkendala dengan daerah layak yang dibatasi oleh busur, dengan empat teknik swarm-intelegence: koloni lebah buatan (ABC) untuk optimasi terkendala, algoritma ABC berbasis crossover, algoritma kunang-kunang untuk optimasi terkendala, dan algoritma kunang-kunang yang disempurnakan; juga algoritma heuristik yang didasarkan pada prosedur Weiszfeld yang dimodifikasi. ABC berbasis crossover mengungguli metaheuristik lainnya (dan juga algoritma heuristik) dalam hal kualitas hasil, ketahanan, dan efisiensi komputasi, dalam eksperimen yang dipublikasikan dalam penelitian ini.

2.4. Kontrol

Metode kontrol distribusi torsi yang dioptimalkan merupakan teknologi penting untuk wheel loader listrik gandar depan/belakang (FREWL) untuk meningkatkan kinerja operasi dan efisiensi energi. Pendekatan jumlah tertimbang untuk meminimalkan rata-rata dan varians beban kerja ban dan memaksimalkan efisiensi motor total pada model dinamika longitudinal FREWL diusulkan oleh Z. Yang dkk. Algoritme pengoptimalan berikut digunakan untuk menyelesaikan masalah: metode pengali Lagrangian quasi-newton, pemrograman kuadratik berurutan, algoritme genetik adaptif, dan pengoptimalan kawanan partikel dengan pembobotan acak dan seleksi alam. Hasil penelitian mengkonfirmasi keunggulan FREWL terkontrol dibandingkan FREWL yang tidak terkontrol.

Pengontrol dual fuzzy immune Proportional-Integral-Derivative (GODFIP) diusulkan oleh A. Dai dkk., dengan mempertimbangkan penghematan energi, stabilitas, akurasi, dan kecepatan. Strukturnya terdiri dari dua pengendali fuzzy, pengendali PID, algoritma kekebalan, dan algoritma optimasi genetik. Kontroler ini dirancang dan disimulasikan untuk mengontrol radiasi inframerah dan pengering biji-bijian konveksi yang diwakili oleh model autoregressive teridentifikasi dengan input eksogen (NARX), yang meningkatkan kinerja kontroler PID imun fuzzy.

2.5. Aplikasi Lain/Militer

Masalah multiobjective weapon target assignment (WTA) di bawah ketidakpastian, yang bertujuan untuk mendapatkan efisiensi intersepsi maksimum dan konsumsi intersepsi minimum, dioptimalkan oleh H. Xu dkk., dengan multiobjective quantum-behaved particle swarm optimization dengan double/single well (MOQPSO-D/S), dan dibandingkan dengan varian PSO yang lain.

Disadur dari: hindawi.com