Pertambangan dan Perminyakan

Program Studi Sarjana Teknik Geofisika

Dipublikasikan oleh Natasya Anggita Saputri pada 16 Mei 2024


Teknik Geofisika adalah ilmu yang mempelajari aspek-aspek fisik dan dinamik bumi, lalu bagaimana melakukan pengukuran dan melakukan pemrosesan data mengenai gejala-gejala alam tersebut. Pada Teknik Geofisika dikembangkan teknologi untuk pemanfaatan sumber daya bumi dan lingkungan alam, selain itu teman-teman akan belajar pula tentang mitigasi bencana kebumian.
Pada program studi Teknik Geofisika terdapat empat kelompok besar studi yaitu eksplorasi sumberdaya bumi; reservoarimaging dan pengolahan data; dan teknik dan lingkungan.


Berbagai hal yag menarik kerapkali terjadi pada bagian bumi tanpa kita sadari. Contohnya saja, lempengan-lempengan pembentuk bumi ini ternyata tidak statis, tapi bergerak dan melakukan pergeseran secara pelan-pelan. Kita memang tidak menyadarinya karena pergeserannya yang sangat tidak kentara, tapi setiap tahun ternyata ada perubahan posisinya. Lalu kenapa ada daerah di bumi yang dinyatakan rawan gempa dan kenapa ada yang tidak. Bagaimana persebaran titik-titik rawan gempa tersebut. Nah, pada program studi Teknik Geofisika inilah teman-teman akan mempelajari hal tersebut.


Selain belajar teoretis di dalam ruangan, teman-teman juga akan menghabiskan waktu di laboratorium. Ilmu-ilmu yang dipelajari pada prinsipnya adalah segala sesuatu yang menyangkut bumi dan bagian-bagian padatnya. Pada proses perkuliahannya teman-teman juga akan akrab dengan beberapa perangkat lunak yang akan membantu teman-teman dalam memodelkan gejala-gejala yang terjadi di bumi.


Saat terjadi bencana alam seperti gempa bumi, tanah longsor, patahnya lempengan kerak bumi seorang sarjana Teknik Geofisika adalah orang yang paling dicari, karena dengan keilmuannya seorang sarjana Teknik Geofisika akan mampu menentukan bagaimana mitigasi dari bencana alam tersebut.

Yang dimaksud dengan mitigasi adalah pencegahan dan usaha meminimalisir dampak-dampak negatif bencana alam tersebut. Karena sebagai manusia kita tidak mampu menolak terjadinya, namun kita mampu mengusahakan sarana-sarana pendukung untuk meminimalisir dampaknya saja.

ROSPEK KERJA

Seorang sarjana Teknik Teknik Geofisika memiliki prospek kerja yang sangat luas di dalam maupun di luar negeri, antara lain:

Instansi Pemerintah:

  • Pertamina
  • Departemen Energi dan Sumber Daya Mineral (Direktorat Volkanologi dan Mitigasi Bencana Geologi, Direktorat Inventarisasi Sumber Daya Mineral, Pusat Penelitian dan Pengembangan Geologi)
  • Departemen Pekerjaan Umum
  • BMKG (Badan Meteorologi Klimatologi dan Geofisika)
  • BRIN (Badan Riset dan Inovasi Nasional)

Swasta:

Bidang eksplorasi, eksploitasi, akuisisi data, pemrosesan data Teknik Geofisika, konsultan, dsb. misalnya di beberapa perusahaan seperti :

  • Caltex Pacific Indonesia
  • Elnusa Geosains
  • Medco Energy
  • UNOCAL
  • British Petroleum
  • PT Freeport Indonesia
  • Geoservices
  • Schlumberger
  • Total Energy

 

Sumber: fttm.itb.ac.id

 

Selengkapnya
Program Studi Sarjana Teknik Geofisika

Pertambangan dan Perminyakan

Perbedaan dari Geologi dan Geofisika

Dipublikasikan oleh Natasya Anggita Saputri pada 16 Mei 2024


Geologi dan geofisika adalah dua cabang ilmu yang mempelajari tentang bumi, tetapi dengan cara yang berbeda. Lalu sebenarnya apa perbedaan dari geologi dan geofisika? Secara umum, perbedaan dari dua cabang ilmu tersebut ada beberapa.

Perbedaan utama ada pada fokus dari masing-masing cabang ilmu dalam mempelajari bumi. Akan tetapi, secara tujuan keduanya sama-sama bertujuan untuk mengetahui keadaan bumi dan pembentukannya.

Apa Perbedaan dari Geologi dan Geofisika? Ini Jawabannya

Dikutip dari buku Pengantar Geologi, Djauhari Noor, (2014), geologi berfokus pada pengamatan langsung terhadap batuan, struktur, komposisi, dan sejarah pembentukan bumi.

Sementara itu, geofisika berfokus pada pengukuran parameter fisika di permukaan bumi untuk mendapatkan informasi tentang bagian-bagian yang tersembunyi di bawahnya.

Kedua bidang ilmu ini saling berkaitan dan saling melengkapi dalam memahami fenomena bumi, baik untuk kepentingan keilmuan maupun eksplorasi sumber daya alam. Lalu apa perbedaan dari geologi dan geofisika? Ini ulasan lengkapnya.

1. Ilmu Geologi

Geologi adalah ilmu yang mempelajari tentang bumi secara umum, termasuk asal-usul, struktur, komposisi, perubahan, dan sejarahnya. Geologi juga mempelajari tentang proses-proses yang terjadi di dalam dan di atas permukaan bumi, seperti tektonik, vulkanisme, erosi, sedimentasi, metamorfisme, dan lain-lain.

Geologi menggunakan metode-metode seperti pengamatan lapangan, pemetaan, pengambilan sampel, analisis laboratorium, pengeboran, dan lainnya untuk mengumpulkan data tentang batuan dan mineral yang membentuk bumi.

Geologi juga menggunakan prinsip-prinsip dari ilmu-ilmu lain seperti kimia, biologi, fisika, dan matematika untuk menganalisa dan menginterpretasi data tersebut.

2. Ilmu Geofisika

Geofisika adalah ilmu yang menerapkan prinsip-prinsip fisika untuk mengetahui dan memecahkan masalah yang berhubungan dengan bumi.

Geofisika menggunakan peralatan-peralatan khusus untuk mengukur parameter fisika seperti gravitasi, magnetik, gelombang seismik, panas bumi, dan listrik di permukaan bumi.

Data-data tersebut kemudian diolah dan diinterpretasi untuk mendapatkan informasi tentang bentuk, struktur, komposisi, dan sifat-sifat fisik dari bagian-bagian bumi yang tidak dapat diamati secara langsung.

Geofisika juga menggunakan teori-teori fisika untuk memahami fenomena-fenomena geofisik seperti gempa bumi, medan magnet bumi, geodinamika, dll.

Jadi jawaban dari pertanyaan apa perbedaan utama antara geologi dan geofisika adalah jenis data yang digunakan. Geologi menggunakan data yang bersifat kualitatif dan deskriptif sementara geofisika menggunakan data yang bersifat kuantitatif dan numerik.

 

Sumber:  kumparan.com

Selengkapnya
Perbedaan dari Geologi dan Geofisika

Pertambangan dan Perminyakan

5 Kampus dengan Jurusan Teknik Geofisika Terbaik di Tanah Air, Akreditasi Unggul dan A

Dipublikasikan oleh Natasya Anggita Saputri pada 16 Mei 2024


Ada sejumlah kampus dengan jurusan Teknik Geofisika terbaik di Tanah Air yang memiliki akreditasi Unggul dan A. Salah satunya membuka dari jenjang S1 hingga S3.
Bagi sebagian orang, jurusan Teknik Geofisika mungkin masih terdengar asing. Prodi ini mempelajari aspek-aspek fisik dan dinamik bumi. Di Indonesia sendiri, sejumlah perguruan tinggi juga sudah membuka jurusan Teknik Geofisika. Beberapa di antaranya telah mendapatkan akreditasi Unggul hingga A. Berikut sejumlah kampus di Indonesia yang memiliki jurusan Teknik Geofisika terbaik. Kampus dengan Jurusan Teknik Geofisika Terbaik di Indonesia

 

1. Institut Teknologi Bandung (ITB)

Institut Teknologi Bandung (ITB) merupakan salah satu perguruan tinggi populer di Indonesia. Setiap tahunnya, cukup banyak calon mahasiswa yang mendaftar di berbagai jurusan yang disediakan. Melihat deretan jurusan kuliah yang dibuka ITB, mereka juga memiliki Teknik Geofisika. Mereka membuka program studi (prodi) Teknik Geofisika di strata S1, S2, dan S3. Prodi S1 Teknik Geofisika ITB memiliki akreditasi Unggul dari lembaga LAM Teknik dan masih berlaku hingga 20 Desember 2027 mendatang.

Sementara itu, untuk strata S2 Teknik Geofisika memiliki predikat Unggul dan jenjang S3 mempunyai akreditasi ‘A’.

2. Institut Teknologi Sepuluh Nopember (ITS)

Tak kalah dengan ITB, Institut Teknologi Sepuluh Nopember (ITS) juga memiliki peminat yang cukup besar setiap tahunnya. Dari sekian banyak jurusan yang dimiliki, mereka juga menyediakan prodi Teknik Geofisika. Prodi S1 Teknik Geofisika ITS memiliki akreditasi ‘Unggul’ dari BAN-PT. Predikat ini masih berlaku hingga 31 Maret 2024 mendatang.

Selain itu, mereka juga telah mendapatkan akreditasi internasional dari IABEE. Sertifikat tersebut didapat pada tahun 2021 lalu.

3. Universitas Syiah Kuala Universitas Syiah Kuala

adalah perguruan tinggi negeri tertua di Aceh. Mereka telah hadir sejak 2 September 1961 dengan Surat Keputusan Menteri Pendidikan Tinggi dan Ilmu Pengetahuan Nomor 11 tahun 1961, tanggal 21 Juli 1961. Pada perkembangannya, Universitas Syiah Kuala membuka banyak jurusan kuliah dalam bidang yang berbeda-beda. Salah satunya adalah Teknik Geofisika. Saat ini, prodi S1 Teknik Geofisika Universitas Syiah Kuala mengantongi akreditasi ‘Unggul’ dari lembaga LAM Teknik. Predikat tersebut masih berlaku hingga 20 April 2028 mendatang.

4. Universitas Lampung

Berikutnya ada Universitas Lampung. Unila juga menjadi salah satu kampus yang memiliki jurusan Teknik Geofisika. Saat ini, prodi S1 Teknik Geofisika Universitas Lampung memiliki predikat ‘Unggul’ dari lembaga LAM Teknik. Akreditas ini masih berlaku sampai 20 Desember 2027.

5. Universitas Pembangunan Nasional Veteran Yogyakarta

UPN Veteran Yogyakarta juga memiliki jurusan Teknik Geofisika. Saat ini, jenjang S1 dari prodi tersebut memiliki akreditasi ‘A’ dari BAN-PT. Akreditasi tersebut didasarkan pada SK nomor 3879/SK/BAN-PT/Akred/S/X/2019. Masa berlakunya akan habis pada 15 Oktober 2024 mendatang. Itulah sejumlah kampus dengan jurusan Teknik Geofisika terbaik di Indonesia yang memiliki akreditasi Unggul dan A.

Sumber: edukasi.sindonews.com

Selengkapnya
5 Kampus dengan Jurusan Teknik Geofisika Terbaik di Tanah Air, Akreditasi Unggul dan A

Pertambangan dan Perminyakan

Apa yang Dimaksud Logam Monel?

Dipublikasikan oleh Farrel Hanif Fathurahman pada 10 Mei 2024


Monel adalah kelompok paduan nikel (52-67%) dan tembaga dengan sejumlah kecil besi, mangan, karbon dan silikon. Monel bukan merupakan paduan tembaga-nikel karena mengandung kurang dari 60% tembaga. Lebih kuat dari nikel murni, paduan Monel tahan terhadap korosi yang disebabkan oleh banyak bahan agresif, termasuk air laut yang mengalir deras. Mereka dapat dengan mudah diproduksi dengan pengerjaan panas dan dingin, permesinan dan pengelasan.

Monel didirikan pada tahun 1905 oleh Robert Crooks Stanley, yang kemudian bekerja di International Nickel Company (Inco). Nama Monel diambil dari nama presiden perusahaan Ambrose Monell dan dipatenkan pada tahun 1906. Satu huruf L dihilangkan karena nama keluarga tidak diperbolehkan sebagai merek dagang pada saat itu. Merek dagang tersebut didaftarkan pada Mei 1921 dan nama tersebut sekarang menjadi merek dagang Special Metals Corporation. Sebagai paduan yang mahal, penggunaannya terbatas pada aplikasi yang tidak dapat digantikan oleh alternatif yang lebih murah. Misalnya, pada tahun 2015, harga pipa Monel tiga kali lebih mahal dibandingkan pipa baja karbon setara.

Sifat-sifat materi

Monel adalah paduan biner larutan padat. Karena nikel dan tembaga larut satu sama lain dalam proporsi berapa pun, ini merupakan paduan fase tunggal. Dibandingkan dengan baja, Monel sangat sulit untuk dikerjakan karena sangat cepat mengeras. Itu harus diputar dan diproses dengan kecepatan lambat dan laju pengumpanan rendah. Ia tahan terhadap korosi dan asam, dan beberapa paduan bersifat tahan api dalam oksigen murni. Ini biasanya digunakan dalam aplikasi dengan kondisi yang sangat korosif. Penambahan kecil aluminium dan titanium menghasilkan paduan (K-500) yang memiliki ketahanan korosi yang sama, namun jauh lebih kuat karena pembentukan gamma-prime selama penuaan. Monel biasanya jauh lebih mahal dibandingkan baja tahan karat.

Paduan monel 400 memiliki berat jenis 8,80, rentang leleh 1300–1350 °C, konduktivitas listrik sekitar 34% IACS, dan kekerasan (anil) 65 Rockwell B. Paduan monel 400 terkenal karena daya tahannya, yang dipertahankan dalam kisaran suhu yang luas.

Paduan monel 400 memiliki sifat mekanik yang sangat baik pada suhu beku. Kekuatan dan kekerasan meningkat dengan sedikit penurunan pada ketangguhan atau ketahanan benturan. Campuran tidak berubah dari plastik menjadi rapuh bahkan ketika didinginkan hingga suhu hidrogen cair. Hal ini sangat kontras dengan banyak bahan besi, yang rapuh pada suhu rendah meskipun kekuatannya meningkat.

Kegunaan

Di sektor kedirgantaraan, logam Monel mulai digunakan secara luas pada tahun 1960-an, khususnya dalam konstruksi pesawat terbang untuk pesawat roket eksperimental seperti X-15 Amerika Utara. Kemampuannya untuk menahan suhu tinggi membuatnya cocok untuk menahan panas yang dihasilkan oleh gesekan aerodinamis selama penerbangan berkecepatan sangat tinggi. Meskipun memiliki kepadatan yang tinggi, Monel mempertahankan kekuatannya pada suhu seperti itu, memastikan integritas struktural selama penerbangan di atmosfer. Monel menemukan berbagai aplikasi dalam perawatan pesawat, terutama dalam kabel pengaman di area bersuhu tinggi, memastikan pengencang tetap aman. Selain itu, beberapa pengencang yang digunakan di pesawat terbang terbuat dari Monel karena sifatnya.

Dalam produksi dan penyulingan minyak, Monel digunakan dalam unit alkilasi yang bersentuhan langsung dengan asam fluorida pekat. Ini menunjukkan ketahanan yang luar biasa terhadap asam fluorida, menjadikannya salah satu paduan teknik yang paling tahan terhadap berbagai asam. Aplikasi kelautan Monel meliputi sistem perpipaan, poros pompa, katup air laut, kawat trolling, dan keranjang saringan karena ketahanan korosinya. Monel juga digunakan dalam paduan non-magnetik untuk kabel jangkar di kapal penyapu ranjau dan di rumah-rumah untuk peralatan pengukuran medan magnet.

Ketahanan monel terhadap korosi membuatnya cocok untuk digunakan dalam rekreasi berperahu, terutama untuk belenggu penahan kawat, tangki air dan bahan bakar, poros baling-baling, dan baut lunas. Namun, tindakan pencegahan harus dilakukan untuk mengisolasi Monel dari logam lain untuk mencegah korosi galvanik. Pada alat musik, Monel digunakan untuk piston katup atau rotor pada alat musik berkualitas tinggi seperti terompet, tuba, dan terompet Prancis. Monel juga telah digunakan pada senar bass elektrik sejak tahun 1960-an dan disukai oleh berbagai artis karena suaranya yang unik.

Di luar aplikasi kedirgantaraan dan kelautan, ketahanan Monel terhadap korosi membuatnya berharga dalam industri kimia, di mana ia digunakan untuk menangani asam, oksigen, dan bahkan fluorida korosif. Selain itu, Monel digunakan dalam proses pengayaan uranium dan regulator untuk gas silinder reaktif di mana PTFE tidak cocok.


Disadur dari: en.wikipedia.org 

Selengkapnya
Apa yang Dimaksud Logam Monel?

Pertambangan dan Perminyakan

Apa yang Dimaksud dari Alloy atau bisa disebut Logam Campuran

Dipublikasikan oleh Farrel Hanif Fathurahman pada 10 Mei 2024


Alloy (Logam paduan/campuran) adalah campuran elemen kimia, yang setidaknya satu di antaranya adalah logam. Tidak seperti senyawa kimia berbasis logam, paduan mempertahankan semua sifat logam dalam bahan yang dihasilkan, seperti konduktivitas listrik, kekuatan, opasitas, dan kilau, tetapi sifat-sifatnya dapat berbeda dari logam murni, seperti peningkatan kekuatan atau kekerasan. Dalam beberapa kasus, paduan dapat mengurangi total biaya material dengan tetap mempertahankan sifat-sifat penting. Dalam kasus lain, paduan memberikan sifat sinergis pada elemen logam, seperti ketahanan korosi atau kekuatan mekanik.

Dalam suatu senyawa, atom-atom bergabung dengan ikatan logam, bukan dengan ikatan kovalen yang biasanya ditemukan dalam senyawa kimia. Konstituen campuran biasanya diukur sebagai persentase massa dalam aplikasi praktis dan sebagai fraksi atom dalam ilmu dasar. Paduan biasanya diklasifikasikan sebagai paduan substitusi atau interstisial, tergantung pada susunan atom yang membentuk paduan. Paduan ini dapat diklasifikasikan lebih lanjut sebagai homogen (terdiri dari satu fase) atau heterogen (terdiri dari dua fase atau lebih) atau intermetalik. Paduan dapat berupa larutan padat elemen logam (satu fase di mana semua butiran logam (kristal) memiliki komposisi yang sama) atau campuran fase logam (dua atau lebih larutan yang membentuk struktur mikro yang terdiri dari kristal yang berbeda di dalam logam).

Paduan meliputi emas merah (emas dan tembaga), emas putih (emas dan perak), perak (perak dan tembaga), baja atau baja silikon (besi dengan karbon non-logam atau silikon), solder, kuningan, timah, duralumin, perunggu, dan amalgam. Paduan digunakan dalam berbagai aplikasi, mulai dari paduan baja yang digunakan dalam berbagai hal, mulai dari bangunan hingga mobil dan instrumen bedah, hingga paduan titanium eksotis yang digunakan dalam industri kedirgantaraan, hingga paduan berilium-tembaga hingga peralatan tahan api.

Karakteristik

Paduan adalah campuran unsur-unsur kimia yang membentuk zat (campuran) tidak murni yang mempertahankan sifat-sifat logam. Paduan berbeda dengan logam tidak murni karena unsur-unsur yang ditambahkan ke dalam paduan sangat terkontrol untuk menghasilkan sifat yang diinginkan, sedangkan logam tidak murni seperti besi tempa kurang terkontrol tetapi sering dianggap berguna. Paduan dibuat dengan mencampurkan dua elemen atau lebih, setidaknya satu di antaranya adalah logam. Logam ini biasanya disebut logam primer atau logam dasar, dan nama logam juga bisa menjadi nama paduan. Bahan-bahan lain mungkin atau mungkin bukan logam, tetapi ketika dicampur dengan bahan dasar cair, larut dan larut dalam campuran. Sifat mekanis paduan sering kali sangat berbeda dari komponen individual. Logam yang biasanya sangat lunak (mudah dibentuk), seperti aluminium, dapat dimodifikasi dengan memadukannya dengan logam lunak lain seperti tembaga.


Perunggu cair, dituangkan ke dalam cetakan selama pengecoran.

Meskipun kedua logam tersebut sangat lunak dan mudah dibentuk, paduan aluminium yang dihasilkan memiliki kekuatan yang jauh lebih besar. Dengan menambahkan sejumlah kecil karbon non-logam pada besi, kelenturannya yang tinggi ditukar dengan kekuatan paduan yang disebut baja. Karena kekuatannya yang sangat tinggi, tetapi kelenturannya yang cukup besar dan kemampuan perlakuan panas yang sangat bervariasi, baja adalah salah satu paduan yang paling berguna dan umum digunakan dalam penggunaan modern. Menambahkan kromium ke baja dapat meningkatkan ketahanan korosinya, menghasilkan baja tahan karat, sementara menambahkan silikon mengubah sifat kelistrikannya, menghasilkan baja silikon.


Sebuah lampu kuningan.

Memahami Teori Logam Campuran (Alloy)

Pemaduan, sebuah proses penting dalam metalurgi, melibatkan pencampuran logam dengan elemen lain untuk meningkatkan sifat-sifatnya. Proses yang sudah ada sejak berabad-abad yang lalu ini biasanya melibatkan pemanasan logam dasar melebihi titik lelehnya dan memasukkan zat terlarut ke dalam cairan cair. Metode ini, efektif bahkan ketika zat terlarut memiliki titik leleh yang lebih tinggi, memungkinkan terciptanya paduan seperti baja, yang terkenal dengan kekuatannya.

Dengan memasukkan elemen tambahan, tekanan internal dalam kisi logam dihasilkan, yang sering kali memperkuat karakteristiknya. Sebagai contoh, menggabungkan karbon dengan besi menghasilkan baja, yang terkenal karena daya tahannya dibandingkan dengan besi murni. Meskipun paduan dapat menunjukkan sifat fisik yang serupa dengan logam dasarnya, sifat-sifat teknik seperti kekuatan tarik dan keuletan dapat bervariasi secara signifikan.


Fotomikrograf baja. Foto atas: Baja yang dianil (didinginkan perlahan) membentuk struktur mikro pipih heterogen yang disebut perlit, terdiri dari fase sementit (terang) dan ferit (gelap). Foto bawah: Baja yang dipadamkan (didinginkan dengan cepat) membentuk fase tunggal yang disebut martensit, di mana karbon tetap terperangkap di dalam kristal, sehingga menciptakan tekanan internal.
 

Selain itu, paduan tidak memiliki titik leleh tunggal, melainkan memiliki rentang di mana ia berada dalam kondisi padat dan cair. Fleksibilitas ini memungkinkan pembuatan paduan dengan titik leleh yang unik, berkat proporsi konstituen yang spesifik, sehingga mengoptimalkan kegunaannya dalam berbagai aplikasi.

Selain itu, perlakuan panas memainkan peran penting dalam memodifikasi sifat paduan. Anil, teknik yang umum digunakan, membantu mengurangi cacat pada struktur kristal, sementara pemanasan dan pendinginan yang terkendali dapat mengeraskan paduan tertentu. Khususnya, paduan pengerasan presipitasi, seperti aluminium dan titanium, melunak pada pendinginan cepat tetapi mengeras seiring waktu melalui pembentukan fase intermetalik.

Memahami mekanisme di balik pembentukan paduan menjelaskan keserbagunaan dan kegunaannya di seluruh industri. Baik melalui pertukaran atom atau mekanisme interstisial, paduan terus mendorong inovasi dalam ilmu pengetahuan material, membuka jalan bagi material yang lebih kuat dan lebih tangguh dalam bidang teknik dan manufaktur.

Sejarah dan Implementainya

  • Besi Meteorik: Paduan (Alloy) Primitif


Sebuah meteorit dan kapak yang ditempa dari besi meteorit. Bukti pola Widmanstätten dari meteorit asli yang digunakan untuk membuat kepala kapak dapat dilihat di permukaannya.

Sejarah manusia menjadi saksi penggunaan paduan paling awal dengan besi meteorik, campuran alami nikel dan besi yang ditemukan dalam meteorit besi. Paduan ini, yang tidak tersentuh oleh proses metalurgi, digunakan secara langsung dalam perkakas dan senjata karena kelangkaan dan nilainya, meskipun kemampuan pengerjaannya yang menantang.

  • Perunggu dan Kuningan: Paduan (Alloy) Tembaga Kuno


Kapak perunggu 1100 SM.

Sekitar 10.000 tahun yang lalu, manusia di Anatolia mulai melebur logam seperti tembaga dan timah dari bijih, yang mengarah pada munculnya perunggu sekitar tahun 2500 SM. Menggabungkan tembaga dan timah menghasilkan paduan yang lebih kuat, sementara tembaga dan seng memunculkan kuningan di Timur Tengah. Peradaban kuno ini dengan cermat menyeimbangkan komposisi paduan untuk mengoptimalkan sifat-sifat seperti kekerasan dan titik leleh.

  • Amalgam: Peran Alkimia Merkuri

Merkuri, yang mampu melarutkan logam seperti emas dan perak, membentuk amalgam yang banyak digunakan dalam penyepuhan dan pertambangan sejak 200 SM di Cina. Bangsa Romawi menyukai amalgam merkuri-timah untuk penyepuhan baju besi, yang menunjukkan keserbagunaan proses pemaduan ini.

  • Logam Mulia: Paduan (Alloy) yang Estetis dan Praktis


Electrum, paduan alami perak dan emas, sering digunakan untuk membuat koin.

Sepanjang sejarah, logam mulia dipadukan untuk daya tarik estetika dan kegunaan praktis. Paduan emas, perak, dan tembaga dibuat untuk meningkatkan kekuatan dan daya tahan, dengan paduan seperti perak sterling yang menjadi bahan pokok dalam barang sehari-hari.

  • Timah Paduan Timah Serbaguna

Pewter, yang terutama terdiri dari timah, telah digunakan secara luas di seluruh peradaban kuno, dipadukan dengan logam seperti timah, antimon, atau bismut untuk meningkatkan kekuatan dan kekerasan. Dari peralatan praktis hingga perhiasan hias, timah memamerkan kemampuan beradaptasi paduan timah.

  • Besi: Dari Pabrik Peleburan hingga Tanur Tinggi

Peleburan besi dimulai sekitar tahun 1800 SM di Anatolia, secara bertahap berkembang melalui teknik-teknik seperti proses bloomery dan produksi besi kasar. Baja krusibel, yang diperkenalkan sekitar tahun 300 SM, menandai kemajuan yang signifikan, yang mengarah pada pengembangan paduan baja berkualitas tinggi melalui metode seperti genangan air dan proses Bessemer.

  • Inovasi Paduan (Alloy) Modern


Genangan air di Tiongkok, c. 1637. Berlawanan dengan kebanyakan proses paduan, besi kasar cair dituangkan dari tanur sembur ke dalam wadah dan diaduk untuk menghilangkan karbon, yang berdifusi ke udara membentuk karbon dioksida, meninggalkan baja ringan menjadi besi tempa

Era industri menyaksikan kemajuan yang luar biasa dalam pengembangan paduan, yang didorong oleh aplikasi dalam industri penerbangan dan otomotif. Inovasi seperti baja berkecepatan tinggi dan baja tahan karat merevolusi manufaktur, menawarkan kekuatan dan ketahanan korosi yang unggul.

  • Masa Depan Paduan (Alloy)

Dengan penelitian dan kemajuan teknologi yang berkelanjutan, bidang rekayasa paduan terus berkembang. Dari paduan kedirgantaraan hingga material kelas medis, paduan memainkan peran penting dalam membentuk industri modern, menjanjikan inovasi dan terobosan lebih lanjut di masa depan.


Disadur dari: en.wikipedia.org

Selengkapnya
Apa yang Dimaksud dari Alloy atau bisa disebut Logam Campuran

Pertambangan dan Perminyakan

Pengertian Logam

Dipublikasikan oleh Muhammad Ilham Maulana pada 06 Mei 2024


Logam, dari bahasa Yunani Kuno μέταλλον (métallon) yang berarti 'tambang, tambang, logam', adalah bahan yang ketika baru disiapkan, dipoles, atau dipatahkan, menunjukkan tampilan yang berkilau, serta menghantarkan listrik dan panas dengan relatif baik. Logam biasanya ulet (dapat ditarik menjadi kabel) dan mudah dibentuk (dapat dipalu menjadi lembaran tipis). Sifat-sifat ini adalah hasil dari ikatan logam antara atom atau molekul logam. Logam dapat berupa unsur kimia seperti besi; paduan seperti baja tahan karat; atau senyawa molekuler seperti sulfur nitrida polimer.

Dalam fisika, logam umumnya dianggap sebagai zat apa pun yang mampu menghantarkan listrik pada suhu nol mutlak. Banyak elemen dan senyawa yang biasanya tidak diklasifikasikan sebagai logam menjadi logam di bawah tekanan tinggi. Sebagai contoh, yodium bukan logam secara bertahap menjadi logam pada tekanan antara 40 hingga 170 ribu kali tekanan atmosfer. Demikian pula, beberapa bahan yang dianggap sebagai logam dapat menjadi bukan logam. Natrium, misalnya, menjadi bukan logam pada tekanan di bawah dua juta kali tekanan atmosfer, meskipun pada tekanan yang lebih tinggi lagi diperkirakan akan menjadi logam lagi.

Dalam kimia, dua elemen yang seharusnya memenuhi syarat (dalam fisika) sebagai logam rapuh - arsenik dan antimon - biasanya dikenal sebagai metaloid karena sifat kimianya (sebagian besar non-logam untuk arsenik, dan seimbang antara logam dan non-logam untuk antimon). Sekitar 95 dari 118 elemen dalam tabel periodik adalah logam (atau kemungkinan besar adalah logam). Jumlahnya tidak tepat karena batas antara logam, bukan logam, dan metaloid sedikit berfluktuasi karena kurangnya definisi yang diterima secara universal tentang kategori yang terlibat.

Dalam astrofisika, istilah "logam" digunakan secara lebih luas untuk merujuk pada semua elemen kimia dalam bintang yang lebih berat daripada helium, dan bukan hanya logam tradisional. Dalam hal ini, empat "logam" pertama yang terkumpul di dalam inti bintang melalui nukleosintesis adalah karbon, nitrogen, oksigen, dan neon, yang kesemuanya merupakan unsur kimia non-logam. Sebuah bintang menggabungkan atom-atom yang lebih ringan, sebagian besar hidrogen dan helium, menjadi atom-atom yang lebih berat selama masa hidupnya. Dalam hal ini, metalitas suatu objek astronomi adalah proporsi materi yang terdiri dari unsur-unsur kimia yang lebih berat.

Logam, sebagai unsur kimia, menyusun 25% kerak Bumi dan hadir dalam banyak aspek kehidupan modern. Kekuatan dan ketahanan beberapa logam telah menyebabkan logam sering digunakan dalam, misalnya, konstruksi bangunan dan jembatan bertingkat tinggi, serta sebagian besar kendaraan, banyak peralatan rumah tangga, perkakas, pipa, dan rel kereta api. Logam mulia secara historis digunakan sebagai mata uang, tetapi di era modern, logam mata uang telah meluas ke setidaknya 23 unsur kimia.

Sejarah logam mulia diperkirakan dimulai dengan penggunaan tembaga sekitar 11.000 tahun yang lalu. Emas, perak, besi (seperti besi meteorik), timah, dan kuningan juga telah digunakan sebelum kemunculan perunggu yang pertama kali diketahui pada milenium kelima sebelum masehi. Perkembangan selanjutnya meliputi produksi bentuk awal baja; penemuan natrium-logam ringan pertama-pada tahun 1809; munculnya baja paduan modern; dan, sejak akhir Perang Dunia II, pengembangan paduan yang lebih canggih.

Properti

  • Bentuk dan struktur

Logam berkilau dan berkilau, setidaknya ketika baru disiapkan, dipoles, atau dipatahkan. Lembaran logam yang lebih tebal dari beberapa mikrometer tampak buram, tetapi daun emas memancarkan cahaya hijau.

Keadaan padat atau cair dari logam sebagian besar berasal dari kapasitas atom logam yang terlibat untuk dengan mudah kehilangan elektron kulit terluarnya. Secara umum, gaya yang menahan elektron kulit terluar atom lebih lemah daripada gaya tarik-menarik pada elektron yang sama yang timbul dari interaksi antara atom-atom dalam logam padat atau cair. Elektron yang terlibat menjadi terdelokalisasi dan struktur atom logam dapat secara efektif divisualisasikan sebagai kumpulan atom yang tertanam dalam awan elektron yang relatif bergerak. Jenis interaksi ini disebut ikatan logam. Kekuatan ikatan logam untuk logam unsur yang berbeda mencapai maksimum di sekitar pusat deret logam transisi, karena unsur-unsur ini memiliki sejumlah besar elektron yang terdelokalisasi.


Batang logam dengan lubang yang dikerjakan dengan panas. Pengerjaan panas memanfaatkan kapasitas logam untuk mengalami deformasi plastis.

Meskipun sebagian besar logam unsur memiliki kepadatan yang lebih tinggi daripada kebanyakan bukan logam, terdapat variasi yang luas dalam kepadatannya, lithium menjadi yang paling tidak padat (0,534 g/cm3) dan osmium (22,59 g/cm3) yang paling padat. (Beberapa logam transisi 6d diperkirakan lebih padat daripada osmium, tetapi prediksi kepadatannya sangat bervariasi dalam literatur, dan bagaimanapun juga, isotop yang diketahui terlalu tidak stabil untuk dapat diproduksi dalam jumlah besar). Magnesium, aluminium dan titanium adalah logam ringan yang sangat penting secara komersial. Kepadatannya masing-masing 1,7, 2,7, dan 4,5 g/cm3 dapat dibandingkan dengan logam struktural yang lebih tua, seperti besi pada 7,9 dan tembaga pada 8,9 g/cm3. Dengan demikian, sebuah bola besi akan memiliki berat yang sama dengan tiga bola aluminium dengan volume yang sama.

Logam biasanya mudah dibentuk dan ulet, berubah bentuk di bawah tekanan tanpa membelah. Sifat ikatan logam yang tidak berarah dianggap berkontribusi secara signifikan terhadap keuletan sebagian besar padatan logam. Sebaliknya, dalam senyawa ionik seperti garam dapur, ketika bidang-bidang ikatan ionik meluncur melewati satu sama lain, perubahan yang dihasilkan di lokasi menggeser ion-ion dengan muatan yang sama lebih dekat, menghasilkan pembelahan kristal. Pergeseran seperti itu tidak teramati pada kristal yang terikat secara kovalen, seperti berlian, di mana terjadi fraktur dan fragmentasi kristal. Deformasi elastis yang dapat dibalik pada logam dapat dijelaskan oleh Hukum Hooke untuk memulihkan gaya, di mana tegangan berbanding lurus dengan regangan.

Panas atau gaya yang lebih besar dari batas elastisitas logam dapat menyebabkan deformasi permanen (tidak dapat dipulihkan), yang dikenal sebagai deformasi plastis atau plastisitas. Gaya yang diterapkan dapat berupa gaya tarik (menarik), gaya tekan (mendorong), atau gaya geser, tekuk, atau puntir (memutar). Perubahan suhu dapat memengaruhi pergerakan atau perpindahan cacat struktural pada logam seperti batas butir, kekosongan titik, dislokasi garis dan sekrup, patahan susun, dan kembar pada logam kristal dan non-kristal. Slip internal, creep, dan kelelahan logam dapat terjadi.

Struktur kristal kubik berpusat pada tubuh, dengan sel satuan 2 atom, seperti yang ditemukan pada mis. kromium, besi, dan tungsten. 

Struktur kristal kubik berpusat muka, dengan sel satuan 4 atom, seperti yang ditemukan pada mis. aluminium, tembaga, dan emas. 

Struktur kristal padat heksagonal, dengan sel satuan 6 atom, seperti yang ditemukan pada mis. titanium, kobalt, dan seng.

Atom-atom zat logam biasanya tersusun dalam salah satu dari tiga struktur kristal yang umum, yaitu kubik berpusat pada tubuh (bcc), kubik berpusat pada muka (fcc), dan heksagonal rapat (hcp). Dalam bcc, setiap atom diposisikan di pusat kubus yang terdiri dari delapan atom lainnya. Pada fcc dan hcp, setiap atom dikelilingi oleh dua belas atom lainnya, tetapi susunan lapisannya berbeda. Beberapa logam mengadopsi struktur yang berbeda tergantung pada suhunya. Sel satuan untuk setiap struktur kristal adalah kelompok atom terkecil yang memiliki kesimetrisan keseluruhan kristal, dan dari situ seluruh kisi kristal dapat dibangun dengan pengulangan dalam tiga dimensi. Dalam kasus struktur kristal kubik berpusat pada tubuh yang ditunjukkan di atas, sel satuan terdiri dari atom pusat ditambah satu-delapan dari masing-masing delapan atom sudut.

  • Listrik dan termal

Struktur elektronik logam berarti logam merupakan konduktor listrik yang relatif baik. Elektron dalam materi hanya dapat memiliki tingkat energi yang tetap dan bukan variabel, dan dalam logam tingkat energi elektron dalam awan elektronnya, setidaknya sampai tingkat tertentu, sesuai dengan tingkat energi di mana konduksi listrik dapat terjadi. Dalam semikonduktor seperti silikon atau bukan logam seperti belerang, terdapat celah energi antara elektron dalam zat dan tingkat energi di mana konduksi listrik dapat terjadi. Akibatnya, semikonduktor dan bukan logam adalah konduktor yang relatif buruk.

Logam unsur memiliki nilai konduktivitas listrik dari 6,9 × 103 S/cm untuk mangan hingga 6,3 × 105 S/cm untuk perak. Sebaliknya, metaloid semikonduktor seperti boron memiliki konduktivitas listrik 1,5 × 10-6 S/cm. Dengan satu pengecualian, elemen logam mengurangi konduktivitas listriknya ketika dipanaskan. Plutonium meningkatkan konduktivitas listriknya apabila dipanaskan pada kisaran suhu sekitar -175 hingga +125 °C. Logam adalah konduktor panas yang relatif baik. Elektron-elektron dalam awan elektron logam sangat mudah bergerak dan dengan mudah dapat meneruskan energi getaran yang diakibatkan oleh panas.

Kontribusi elektron logam terhadap kapasitas panas dan konduktivitas termalnya, serta konduktivitas listrik logam itu sendiri dapat dihitung dari model elektron bebas. Namun demikian, hal ini tidak memperhitungkan struktur rinci dari kisi ion logam. Dengan memperhitungkan potensial positif yang disebabkan oleh susunan inti ion, memungkinkan pertimbangan struktur pita elektronik dan energi pengikatan logam. Berbagai model matematis dapat diterapkan, yang paling sederhana adalah model elektron hampir bebas.

  • Kimia

Logam biasanya cenderung membentuk kation melalui kehilangan elektron. Sebagian besar akan bereaksi dengan oksigen di udara untuk membentuk oksida dalam berbagai rentang waktu (kalium terbakar dalam hitungan detik, sementara besi berkarat dalam hitungan tahun). Beberapa yang lain, seperti paladium, platina, dan emas, tidak bereaksi dengan atmosfer sama sekali; emas bahkan membentuk senyawa yang mendapatkan elektron (aurida, misalnya caesium aurida).

Oksida logam sering kali bersifat basa, berlawanan dengan oksida nonlogam yang bersifat asam atau netral. Pengecualian sebagian besar adalah oksida dengan tingkat oksidasi yang sangat tinggi seperti CrO3, Mn2O7, dan OsO4, yang memiliki reaksi sangat asam; dan oksida dari logam yang kurang elektropositif seperti BeO, Al2O3, dan PbO, yang dapat menunjukkan sifat basa dan asam. Ini disebut oksida amfoter.

Pengecatan, anodisasi, atau pelapisan logam adalah cara yang baik untuk mencegah korosi. Namun, logam yang lebih reaktif dalam seri elektrokimia harus dipilih untuk pelapisan, terutama ketika lapisan diharapkan terkelupas. Air dan dua logam membentuk sel elektrokimia dan, jika pelapis kurang reaktif daripada logam yang mendasarinya, pelapis sebenarnya mendorong korosi.

 

Disadur dari: en.wikipedia.org 

Selengkapnya
Pengertian Logam
page 1 of 21 Next Last »